

THIS MANUAL MUST BE LEFT WITH THE BUILDING OWNER FOR FUTURE REFERENCE

Improper installation, adjustment, alteration, service or maintenance can cause property damage, personal injury or loss of life. Installation and service must be performed by a licensed professional HVAC installer or equivalent, or service agency.

A IMPORTANT

The Clean Air Act of 1990 bans the intentional venting of refrigerant (CFCs, HCFCs and HFCs) as of July 1, 1992. Approved methods of recovery, recycling or reclaiming must be followed. Fines and/or incarceration may be levied for noncompliance.

As with any mechanical equipment, contact with sharp sheet metal edges can result in personal injury. Take care while handling this equipment and wear gloves and protective clothing.

A WARNING

- To prevent serious injury or death:
- 1. Lock-out/tag-out before performing maintenance.
- 2. If system power is required (e.g., smoke detector maintenance), disable power to blower, remove fan belt where applicable, and ensure all controllers and thermostats are set to the "OFF" position before performing maintenance.
- 3. Always keep hands, hair, clothing, jewelry, tools, etc. away from moving parts.

INSTALLATION INSTRUCTIONS

ELXC Series 6 – 20 Ton

AIR CONDITIONERS 6 - 20 TONS 508322-01 10/2022

Table of Contents

Model Number Identification	2
Unit Dimensions, Corner Weights and Centers of C	Gravity 3
Unit Plumbing Parts Arrangement	6
Unit Control Box Components Arrangement	12
Rigging the Unit for Lifting	13
Installation Clearances	14
Line Set	14
Electrical Connections	15
Refrigerant Charge	21
System Operation	21
Maintenance	22

Shipping and Packing List

Check the unit for shipping damage. If damaged or parts are missing, immediately contact the last shipping carrier.

- 1 Assembled outdoor unit
- 1 Installation instructions

Outdoor Unit

ELXC air conditioners, which will also be referred to in this instruction as the outdoor unit, use HFC-410A refrigerant. This outdoor unit must be installed with a matching indoor unit and line set as outlined in the ELXC Engineering Handbook.

This outdoor unit is designed for use in thermal expansion valve (TXV) systems only.

Model Number Identification

Unit Dimensions, Corner Weights and Centers of Gravity

											C ELO	90XC
	CORNER WEIGHTS							CENTER OF GRAVITY				
Model No.	AA		BB		сс		DD		EE		FF	
NO.	lbs.	kg	lbs.	kg	lbs.	kg	lbs.	kg	in.	mm	in.	mm
EL072XCSS	66	30	73	33	97	44	82	37	23-1/4	591	19-1/4	489
EL090XCSS	75	34	89	40	112	51	88	40	25	635	20-1/4	514

									EL1	20XC	EL150	XC
	CORNER WEIGHTS								CENTER OF GRAVITY			
Model No.	AA		BB		сс		DD		EE		FF	
NO.	lbs.	kg	lbs.	kg	lbs.	kg	lbs.	kg	in.	mm	in.	mm
EL120XCSS	130	59	124	56	107	49	111	50	20-1/2	521	33-1/2	851
EL120XCSD	122	55	119	54	127	58	131	59	21	533	28-1/2	724
EL150XCSD	144	66	132	60	133	60	145	66	19	483	30	762

REFRIGERANT LINE CONNECTIONS DETAIL

TOP VIEW

									EL	180XC	EL24	OXC
	CORNER WEIGHTS							CENTER OF GRAVITY				
Model No.	AA		BB		СС		DD		EE		FF	
	lbs.	kg	lbs.	kg	lbs.	kg	lbs.	kg	in.	mm	in.	mm
EL180XCSD	181	82	177	81	215	98	221	100	29	737	38	965
EL240XCSD	192	87	189	86	232	105	238	108	29	737	37-1/2	953

Unit Plumbing Parts Arrangement

EL072XCSS

EL090XCSS

EL120XCSD – STAGE 1

EL150XCSD – STAGE 2

EL180XCSD – STAGE 2

EL240XCSD – STAGE 2

Rigging the Unit for Lifting

Rig the unit for lifting by attaching four cables to the holes in the base rail of the unit. See figures 1 through 3.

- 1 Remove protective packaging before rigging the unit for lifting.
- 2 Connect the rigging to the holes in each corner of the unit's base.
- 3 All panels must be in place for rigging.
- 4 Place a field-provided H-style frame just above the top edge of the unit. The frame must be of adequate strength and length. (An H-style frame will prevent the top of the unit from being damaged.)

Caution - do not walk on unit. Important - all panels must be in place for rigging. FIGURE 2. ELXC AIR CONDITIONERS (TWO FANS) Lifting point should be directly above the center of gravity. Caution - do not walk on unit. Important - all panels must be in place for rigging.

Lifting point should be directly above the center of gravity.

FIGURE 3. ELXC AIR CONDITIONERS (FOUR FANS)

Installation Clearances

See Unit Dimensions on page 2 for sizing mounting slab, platforms or supports. Refer to figures 4 through 6 for mandatory installation clearance requirements.

NOTES:

- Clearance to one of the remaining two sides may be 12 in. (305 mm) and the final side may be 6 in. (152 mm).
- A clearance of 24 in. (610 mm) must be maintained between two units.
- 48 in. (1219 mm) clearance required on top of unit.

FIGURE 4. ELXC AIR CONDITIONERS (One Fan) Installation Clearances

FIGURE 5. ELXC AIR CONDITIONERS (Two Fans) Installation Clearances

FIGURE 6. ELXC AIR CONDITIONERS (Four Fans) Installation Clearances

Line Set

Field refrigerant piping consists of liquid and suction lines connecting the condensing unit and the indoor unit. Liquid and suction service valves are located in a compartment at the corner of the unit below the control box.

Piping can be routed directly from the service valves or field supplied elbows can be added to divert the piping as required.

Refer to table 1 for field-fabricated refrigerant line sizes for runs up to 50 linear feet (15 m).

op to so Eillear Feel								
Unit	Liquid Line	Suction Line						
EL072XCSS	3/8" (10mm)	1-1/8" (29mm)						
EL090XCSS	5/8" (16mm)	1-1/8" (29mm)						
EL120XCSS	5/8" (16mm)	1-1/8" (29mm)						
EL120XCSD	3/8" (10mm)	1-1/8" (29mm)						
EL150XCSD	3/8" (10mm)	1-1/8" (29mm)						
EL180XCSD	5/8" (16mm)	1-1/8" (29mm)						
EL240XCSD	5/8" (16mm)	1-1/8" (29mm)						

TABLE 1. Refrigerant Line Sizes for Runs Up to 50 Linear Feet

Refrigerant Line Limitations

You may install the unit in applications that have line set lengths of up to 50 linear feet (15 m) with refrigerant line sizes as outlined in table 1 (excluding equivalent length of fittings). Size refrigerant lines greater than 50 linear feet (15m or greater) according to the Refrigerant Piping Design and Fabrication Guidelines (Corp. 9351-L9) or latest version.

Electrical Connections

In the United States, wiring must conform with current local codes and the current National Electric Code (NEC). In Canada, wiring must conform with current local codes and the current Canadian Electrical Code (CEC).

TRANSFORMER – 24V

Use the transformer provided with the air conditioning unit for low-voltage control power (24V, 90VA)

NOTE – The addition of accessories to the system could exceed the 90VA power requirement of the factory-provided transformer. Measure the system's current and voltage after installation is complete to determine transformer loading. If loading exceeds the factory-provided transformer capacity, a larger field-provided transformer will need to be installed in the system.

Refer to the unit nameplate for minimum circuit ampacity amperage minimum, and maximum fuse or circuit breaker fusible (HACR per NEC). Install power wiring and properly sized disconnect switch.

NOTE — UNITS ARE APPROVED FOR USE ONLY WITH COPPER CONDUCTORS. GROUND UNIT AT DISCONNECT SWITCH OR TO AN EARTH GROUND.

3 INSTALL THERMOSTAT

Install room thermostat (ordered separately) on an inside wall approximately in the center of the conditioned area and 5 feet (1.5m) from the floor. It should not be installed on an outside wall or where it can be affected by sunlight, drafts or vibrations.

A WARNING

Electric Shock Hazard. Can cause injury or death. Unit must be properly grounded in accordance with national and local codes.

Line voltage is present at all components when unit is not in operation on units with single-pole contactors. Disconnect all remote electric power supplies before opening access panel. Unit may have multiple power supplies.

FIGURE 8. Typical Field Wiring – Two Compressors

FIGURE 9. Typical Wiring Diagram – ELXC Air Conditioners

FIGURE 10. Typical Wiring Diagram – ELXC Air Conditioners

FIGURE 11. Typical Wiring Diagram – ELXC Air Conditioners

Refrigerant Charge

The ELXC units have a factory holding charge of 2 pounds of HFC-410A in each circuit. Additional refrigerant will need to be added during installation. Charge using the HFC-410A charging information label provided in the unit. The HFC-410A charging information label in the unit applies to Indoor and Outdoor unit with same full load capacity, see table below. For all other unit matches, please contact Commercial Application department for Charging Procedure Information (form # 508349-01).

Split System Matches								
Cooling Unit	Air Handler	Air Handler SCFM						
EL072XC	EL072XA	2600						
EL090XC	EL090XA	2630						
EL120XCSS	EL120XA	3770						
EL120XCSD	EL120XA	4000						
EL150XC	EL150XA	4425						
EL180XC	EL180XA	5275						
EL240XC	EL240XA	7120						

System Operation

The outdoor unit and indoor unit cycle on demand from the room thermostat. Refer to interconnect diagram (figures 7 and 8) for demand signals passed from the indoor unit to the outdoor unit.

For details on the outdoor unit component operation based on thermostat demand, refer to tables below.

EL072XC, EL090XC

Thermostat Demand	Input Signals at Terminal Strip ²	Compressor Output	Fan
(Key Number1)	(TB14)	(B1)	(B4)
STANDBY	R	OFF	OFF
COOLING 1	C1	LOW	ON
COOLING 2	C1+C2	HIGH	ON

Footnotes:

1. Refer to Component Label or Wiring Diagram for key numbers.

2. 24V input signals measured between one TB14 connection listed and TB14-C connection.

EL120XCSS									
Thermostat Demand	Input Signals at Terminal Strip ²	Compressor Output	Fa	ins					
(Key Number ¹)	(TB14)	(B1)	(B4)	(B5)					
STANDBY	R	OFF	OFF	OFF					
COOLING 1	C1	LOW	ON	ON					
COOLING 2	C1+C2	HIGH	ON	ON					
Footnotes:									

1. Refer to Component Label or Wiring Diagram for key numbers.

 $24\mathrm{V}$ input signals measured between one TB14 connection listed and TB14-C connection. 2.

EL120XCSD						
Thermostat Demand	Input Signals at Terminal Strip ²	Comp Out	ressor put	Fans		
(Key Number¹)	(TB14)	(B1)	(B2)	(B4)	(B5)	
STANDBY	R	OFF	OFF	OFF	OFF	
COOLING 1	C1	LOW	OFF	ON	ON	
COOLING 2	C1+C2	LOW	LOW	ON	ON	
COOLING 3	C1+C2+C3	HIGH	HIGH	ON	ON	
F 1 1						

Footnotes:

1. Refer to Component Label or Wiring Diagram for key numbers.

2. 24V input signals measured between one TB14 connection listed and TB14-C connection

EL150XC											
Thermostat Demand	Input Signals at Terminal Strip ²	Comp Out	ressor put	Fans							
(Key Number¹)	(TB14)	(B1)	(B2)	(B4)	(B5)						
STANDBY	R	OFF	OFF	OFF	OFF						
COOLING 1	C1	LOW	OFF	ON	OFF						
COOLING 2	C1+C2	LOW	LOW	ON	ON						
COOLING 3	C1+C2+C3	HIGH	HIGH	ON	ON						
Footnotos:											

1. Refer to Component Label or Wiring Diagram for key numbers.

2. 24V input signals measured between one TB14 connection listed and TB14-C connection.

EL180XC, EL240XC									
Thermostat Demand	Input Signals at Terminal Strip ²	Compressor Output		Compressor Output Fans					
(Key Number1)	(TB14)	(B1)	(B2)	(B4)	(B5)	(B21)	(B22)		
STANDBY	R	OFF	OFF	OFF	OFF	OFF	OFF		
COOLING 1	C1	LOW	OFF	ON	ON	OFF	OFF		
COOLING 2	C1+C2	LOW	LOW	ON	ON	ON	ON		
COOLING 3	C1+C2+C3	HIGH	HIGH	ON	ON	ON	ON		
Footnotes:				<u>.</u>	·				

1. Refer to Component Label or Wiring Diagram for key numbers.

2. 24V input signals measured between one TB14 connection listed and TB14-C connection.

HIGH PRESSURE SWITCHES (S4 AND S7)

These units are equipped with a manual reset high pressure switch (single-pole, single-throw) which is located on the discharge line. The switch shuts off the compressor when discharge pressure rises above the factory setting. High Pressure (auto reset) – trip at 640 psig; reset at 512 psig.

LOSS OF CHARGE SWITCHES (S24 AND S25)

NOTE – Used on units with two two-stage compressors.

These units are equipped with a loss-of-charge switch that is located in the liquid line. The switch is a SPST, auto-reset switch that is normally closed. The switch opens at 40 psi and closes at 90 psi.

LOW PRESSURE SWITCH (S87)

NOTE – Used on units with one two-stage compressor.

These units are equipped with a loss-of-charge switch that is located in the liquid line. The switch is a SPST, auto-reset switch that is normally closed. The switch opens at 40 psi and closes at 90 psi.

Maintenance

At the beginning of each cooling season, the system should be checked as follows:

OUTDOOR UNIT

- 1 Clean and inspect the condenser coil. You can flush the coil with a water hose.
- 2 The outdoor fan motor is prelubricated and sealed. No further lubrication is necessary.
- 3 Visually inspect connecting lines and coils for evidence of oil leaks.
- 4 Check wiring for loose connections.

- 5 Check for correct voltage at the unit while the unit is operating and while it is off.
- 6 Check amp-draw of the outdoor fan motor(s). Unit nameplate Actual

7 -	Check	amp-draw	of	the	compressor(s).
	Unit na	meplate _			
	Compres	ssor #1 _			
	Compres	ssor #2 _			

NOTE – If the owner complains of insufficient	cooling,
gauge the unit and check the refrigerant charge.	Refer to
section on refrigerant charging in this instruction.	

INDOOR UNIT

- 1 If necessary, clean the coil.
- 2 Check connecting lines and coils for evidence of oil leaks.
- 3 If necessary, check the condensate line and clean it.
- 4 Clean or change filters.
- 5 Adjust the blower speed for cooling. Measure the pressure drop over the coil to determine the correct blower CFM. Refer to the unit information service manual for pressure drop tables and procedure.
- 6 On belt drive blowers, check the belt for wear and proper tension.
- 7 Check all wiring for loose connections.
- 8 Check for correct voltage at the unit (blower operating).
- 9 Check amp-draw blower on motor. Unit nameplate _____ Actual _____

Start-Up and Performance Checklist				
Job Name	Job no.	Date		
Job Location	City	State		
Installer	City	State		
Unit Model No Serial No		Service Technician		
Nameplate Voltage				
Rated Load Ampacity Compressor Amperage:				
Maximum Fuse or Circuit Breaker				
Electrical Connections Tight?	clean? 🗋	Supply Voltage (Unit Off)		
Indoor Blower RPM S.P. Drop Over Indoor (Dry)	Outdoor Coil Entering Air Temp.		
Vapor Pressure;				
Refrigerant Lines: - Leak Checked? 🔲 Properly Insu	lated? 🗋	Outdoor Fan Checked?		
Service Valves: Fully Opened? Caps Tight?		Voltage With Compressor Operating		
SEQUENCE OF OPERATION		THERMOSTAT		
Heating Correct? Cooling Correct?		Calibrated? Properly Set?	Level? 🗋	