

THIS MANUAL MUST BE LEFT WITH THE BUILDING OWNER FOR FUTURE REFERENCE

A WARNING

Improper installation, adjustment, alteration, service or maintenance can cause property damage, personal injury or loss of life. Installation and service must be performed by a licensed professional HVAC installer or equivalent, or service agency.

A IMPORTANT

The Clean Air Act of 1990 bans the intentional venting of refrigerant (CFCs, HCFCs and HFCs) as of July 1, 1992. Approved methods of recovery, recycling or reclaiming must be followed. Fines and/or incarceration may be levied for noncompliance.

As with any mechanical equipment, contact with sharp sheet metal edges can result in personal injury. Take care while handling this equipment and wear gloves and protective clothing.

A WARNING

To prevent serious injury or death:

- 1. Lock-out/tag-out before performing maintenance.
- 2. If system power is required (e.g., smoke detector maintenance), disable power to blower, remove fan belt where applicable, and ensure all controllers and thermostats are set to the "OFF" position before performing maintenance.
- 3. Always keep hands, hair, clothing, jewelry, tools, etc. away from moving parts.

INSTALLATION INSTRUCTIONS

ELXP Series 6, 7.5 and 10 Ton

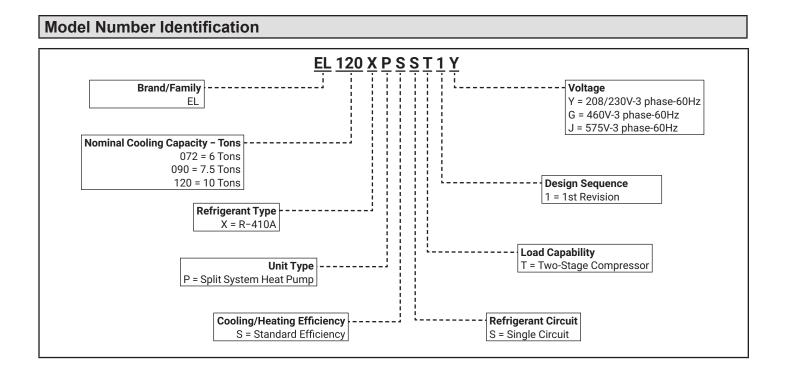
HEAT PUMPS 6, 7.5 AND 10 TONS 508323-01 10/2022

Table of Contents

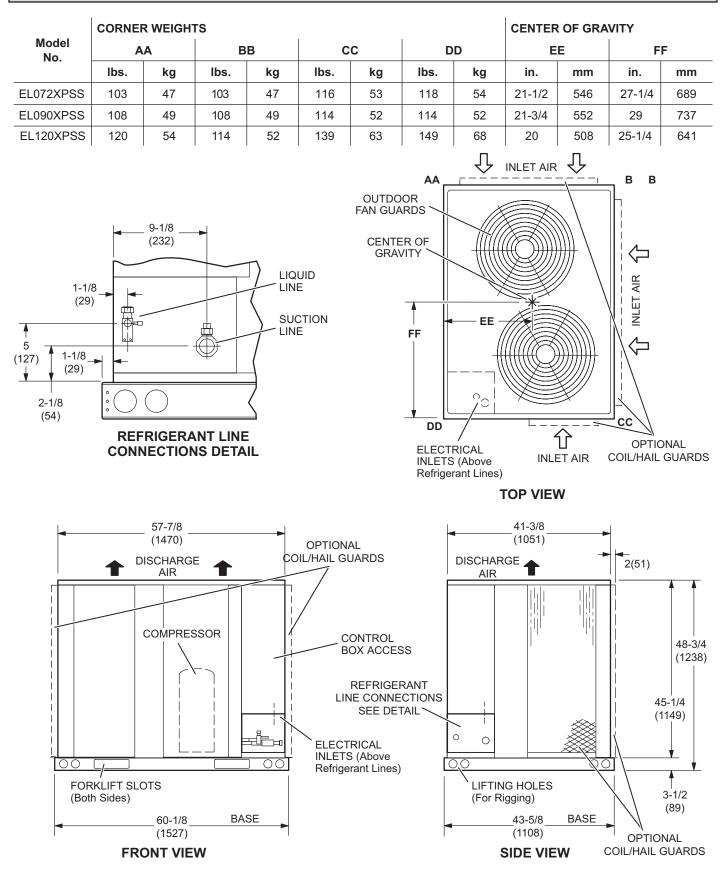
Model Number Identification2
Unit Dimensions, Corner Weights and Centers of Gravity 3
Unit Plumbing Parts Arrangement4
Unit Control Box Component Arrangement5
Rigging the Unit for Lifting5
Installation Clearances6
Line Set6
Electrical Connections6
Refrigerant Charge10
System Operation10
Defrost System10
Defrost Control Board10
Maintenance11

Shipping and Packing List

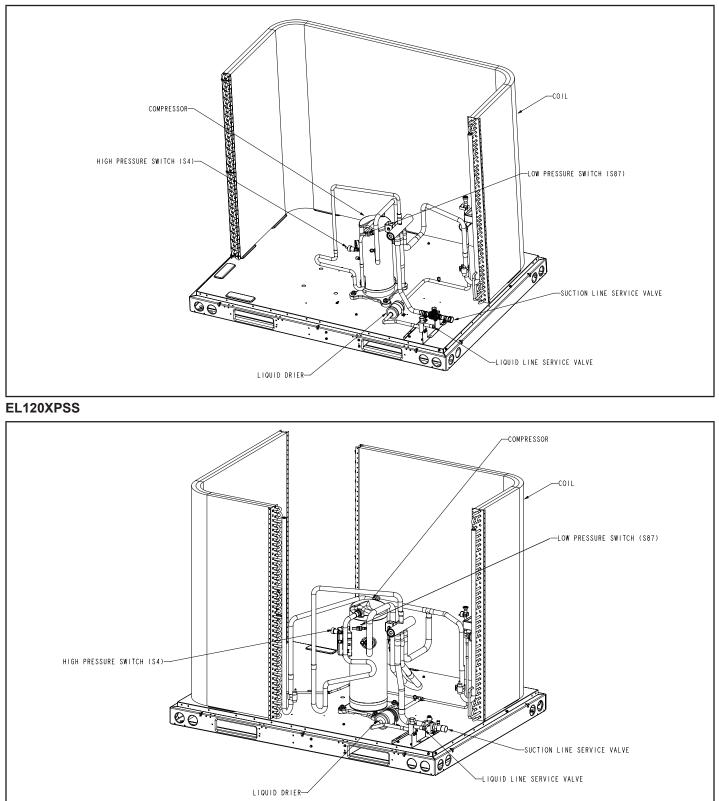
Check the unit for shipping damage. If damaged or parts are missing, immediately contact the last shipping carrier.

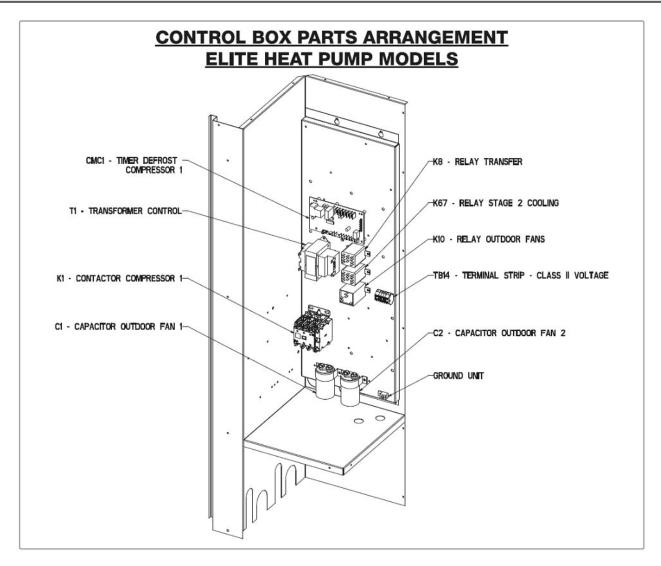

- 1 Assembled outdoor unit
- 1 Installation instructions

Outdoor Unit


ELXP heat pumps, which will also be referred to in this instruction as the outdoor unit, use HFC-410A refrigerant. This outdoor unit must be installed with an approved indoor air handler. For AHRI certified system match-ups and expanded ratings, visit www.ahridirectory.org.

This outdoor unit is designed for use in thermal expansion valve (TXV) systems only.




Unit Dimensions, Corner Weights and Centers of Gravity

Unit Plumbing Parts Arrangement

EL072XPSS / EL090XPSS

Rigging the Unit for Lifting

Rig the unit for lifting by attaching four cables to the holes in the base rail of the unit. See figure 1.

- 1 Remove protective packaging before rigging the unit for lifting.
- 2 Connect the rigging to the holes in each corner of the unit's base.
- 3 All panels must be in place for rigging.
- 4 Place a field-provided H-style frame just above the top edge of the unit. The frame must be of adequate strength and length. (An H-style frame will prevent the top of the unit from being damaged.)

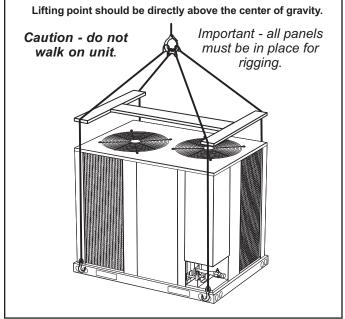


FIGURE 1. ELXP Heat Pump Models

Installation Clearances

See Unit Dimensions on page 3 for sizing mounting slab, platforms or supports. Refer to figure 2 for mandatory installation clearance requirements.

NOTES:

- Clearance to one of the remaining two sides may be 12 in. (305 mm) and the final side may be 6 in. (152 mm).
- A clearance of 24 in. (610 mm) must be maintained between two units.
- 48 in. (1219 mm) clearance required on top of unit.

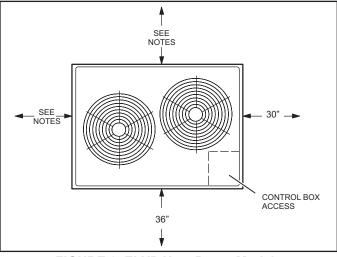


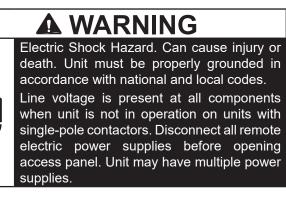
FIGURE 2. ELXP Heat Pump Models Installation Clearances

Line Set

Field refrigerant piping consists of liquid and suction lines connecting the condensing unit and the indoor unit. Liquid and suction service valves are located in a compartment at the corner of the unit below the control box.

Piping can be routed directly from the service valves or field supplied elbows can be added to divert the piping as required.

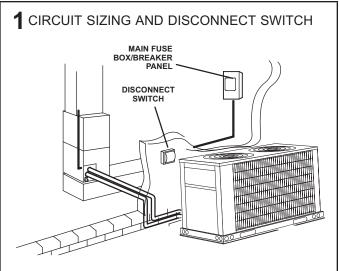
Refer to table 1 for field-fabricated refrigerant line sizes for runs up to 50 linear feet (15 m).


TABLE 1. Refrigerant Line Sizes for Runs Up to 50 Linear Feet

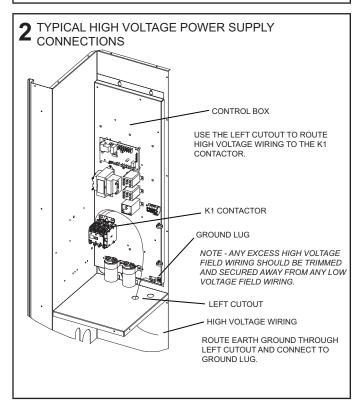
Unit	Liquid Line	Suction Line
EL072XP / EL090XP	5/8" (16mm)	1-1/8" (29mm)
EL120XP	5/8" (16mm)	1-1/8" (29mm)

Refrigerant Line Limitations

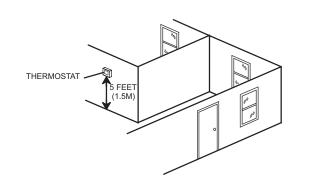
You may install the unit in applications that have line set lengths of up to 50 linear feet (15 m) with refrigerant line sizes as outlined in table 1 (excluding equivalent length of fittings). Size refrigerant lines greater than 50 linear feet (15m or greater) according to the Refrigerant Piping Design and Fabrication Guidelines (Corp. 9351-L9) or latest version.


Electrical Connections

In the United States, wiring must conform with current local codes and the current National Electric Code (NEC). In Canada, wiring must conform with current local codes and the current Canadian Electrical Code (CEC).

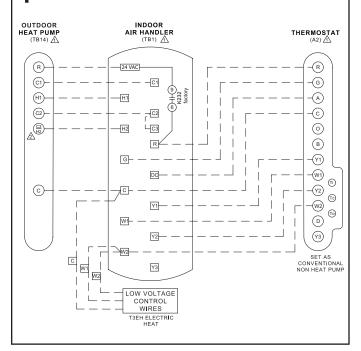

TRANSFORMER - 24VAC, 90VA - PROVIDED

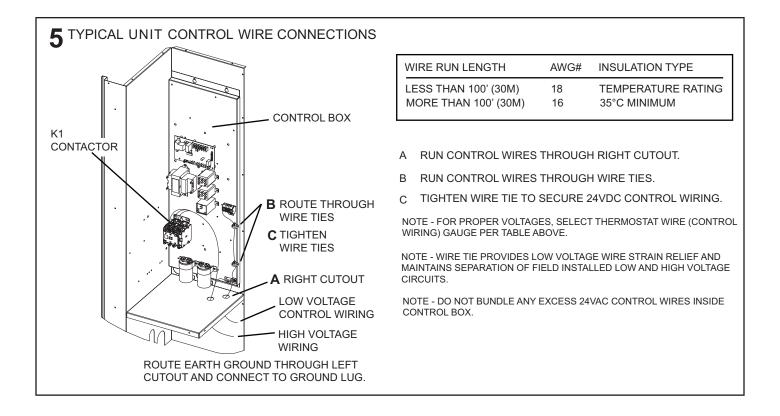
NOTE – The addition of accessories to the system could exceed the 90VA power requirement of the factory-provided transformer. Measure the system's current and voltage after installation is complete to determine transformer loading. If loading exceeds the factory-provided transformer capacity, a larger field-provided transformer will need to be installed in the system.



Refer to the unit nameplate for minimum circuit ampacity amperage minimum, and maximum fuse or circuit breaker fusible (HACR per NEC). Install power wiring and properly sized disconnect switch.

NOTE — UNITS ARE APPROVED FOR USE ONLY WITH COPPER CONDUCTORS. GROUND UNIT AT DISCONNECT SWITCH OR TO AN EARTH GROUND.




3 INSTALL THERMOSTAT

Install room thermostat (ordered separately) on an inside wall approximately in the center of the conditioned area and 5 feet (1.5m) from the floor. It should not be installed on an outside wall or where it can be affected by sunlight, drafts or vibrations.

4 TYPICAL CONTROL WIRING

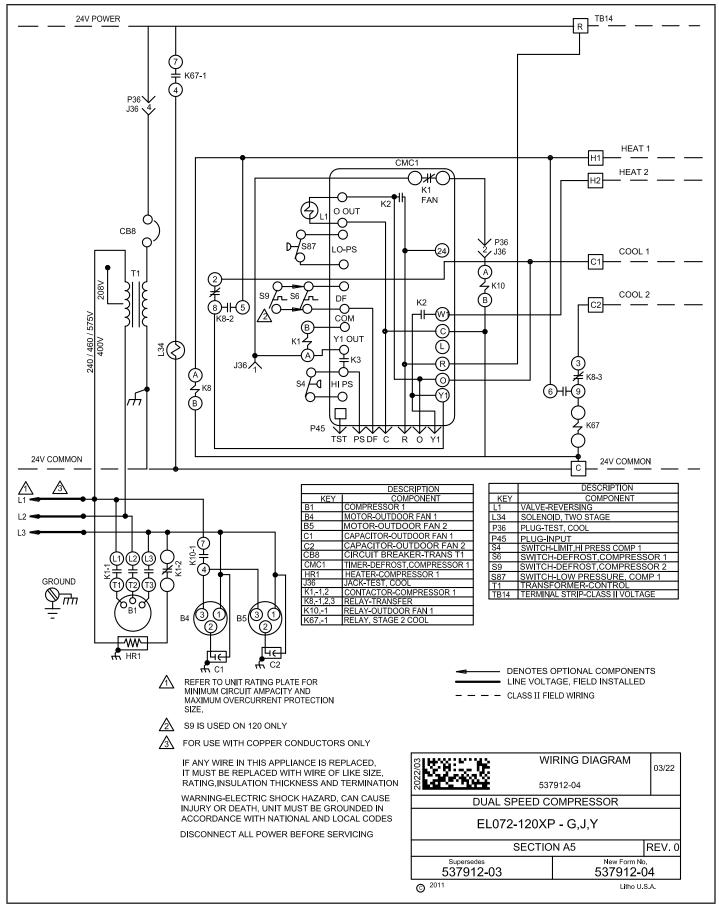


FIGURE 3. Typical Wiring Diagram – ELXP Heat Pumps

Refrigerant Charge

The ELXP units have a factory holding charge of 2 pounds of HFC-410A in each circuit. Additional refrigerant will need to be added during installation. Charge using the HFC-410A charging information label provided in the unit. The HFC-410A charging information label in the unit applies to Indoor and Outdoor unit with same full load capacity, see table below. For all other unit matches, please contact Commercial Application department for Charging Procedure Information (form # 508349-01).

Split System Matches				
Cooling Unit Air Handler		Air Handler SCFM		
EL072XP	EL090XA	2600		
EL090XP	EL090XA	2760		
EL120XP	EL120XA	3925		

System Operation

The outdoor unit and indoor unit cycle on demand from the room thermostat. Refer to interconnect diagram (page 7, step 4) for demand signals passed from the indoor unit to the heat pump.

For details on the heat pump component operation based on thermostat demand, refer to table 2.

HEAT PUMPS						
Thermostat Demand	Input Signals at Terminal Strip ²	Compressor Output	Fans		Re- versing Valve	
(Key Number¹)	(TB14)	(B1)	(B4)	(B5)	(L1)	
STANDBY	R	OFF	OFF	OFF	OFF	
COOLING 1	C1	LOW	ON	ON	ON	
COOLING 2	C1+C2	HIGH	ON	ON	ON	
HEATING	H1	HIGH	ON	ON	OFF	
AUXILARY HEAT	H2	Output Signal from CMC1 to Indoor Unit				

TABLE 2. Component Operation

Footnotes:

1. Refer to Component Label or Wiring Diagram for key numbers.

2. 24V input signals measured between one TB14 connection listed and TB14-C connection.

HIGH PRESSURE SWITCHES (S4)

These units are equipped with an auto-reset high pressure switch (single-pole, single-throw) which is located on the discharge line. The switch shuts off the compressor when discharge pressure rises above the factory setting. High Pressure (auto reset) – trip at 640 psig; reset at 475 psig.

LOW PRESSURE SWITCH (S87)

These units are equipped with a loss-of-charge switch that is located in the liquid line. The switch is a SPST, auto-reset switch that is normally closed. The switch opens at 40 psi and closes at 90 psi.

Defrost System

The defrost system includes a defrost thermostat and a defrost control.

DEFROST THERMOSTAT (S6, S9)

The defrost thermostat is located on the liquid line between the check/expansion valve and the distributor on each coil. When the defrost thermostat switch senses coil temperature at set point or lower (072/090 - 35° F; 120 - 42° F), its contacts close and send a signal to the defrost control board to start the defrost timing. It also terminates defrost when the liquid line warms up to set point (072/090 - 60° F; 120 - 70° F) and its contacts open.

DEFROST CONTROL (CMC1)

The defrost control board includes the combined functions of a time/temperature defrost control, defrost relay, time delay, diagnostic LEDs, and a terminal strip for field wiring connections.

The control provides automatic switching from normal heating operation to defrost mode and back. During compressor cycle (defrost thermostat is closed, calling for defrost), the control accumulates compressor run times at 30, 60, or 90 minute field adjustable intervals. If the defrost thermostat is closed when the selected compressor run time interval ends, the defrost relay is energized and defrost begins.

Each timing pin selection provides a different accumulated compressor run time period for one defrost cycle. This time period must occur before a defrost cycle is initiated. The defrost interval can be adjusted to 30 (T1), 60 (T2), or 90 (T3) minutes. The maximum defrost period is 14 minutes and cannot be adjusted.

NOTE – Defrost control part number is listed near the P1 timing pins.

• Units with defrost control **100269-07 or higher**: The factory default defrost interval is 90 minutes.

If the timing selector jumper is missing, the defrost control defaults to a 90-minute defrost interval.

Defrost Control Board

DEFROST CONTROL TIMING PINS

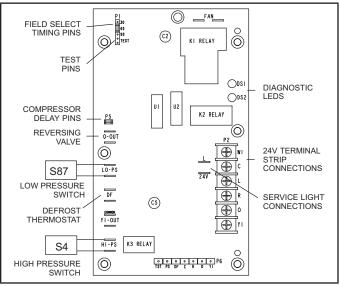


FIGURE 4. Outdoor Unit Defrost Control Board

A TEST option is provided for troubleshooting. The TEST mode may be started any time the unit is operating in the heating mode and the defrost thermostat is closed or jumpered. If the jumper is in the TEST position at power-up, the control will ignore the test pins. When the jumper is placed across the TEST pins for two seconds, the control will enter the defrost mode. If the jumper is removed before an additional 5-second period has elapsed (7 seconds total), the unit will remain in defrost mode until the defrost thermostat opens or 14 minutes have passed. If the jumper is not removed until after the additional 5-second period has elapsed, the defrost will terminate and the test option will not function again until the jumper is removed and re-applied.

COMPRESSOR DELAY

The defrost board has a field-selectable function to reduce occasional sounds that may occur while the unit is cycling in and out of the defrost mode. When the compressor delay jumper is removed, the compressor will be cycled off for 30 seconds going in and out of the defrost mode.

NOTE – The 30-second compressor feature is ignored when the TEST pins have been jumpered.

TIME DELAY

The timed-off delay is five minutes long. The delay helps protect the compressor from short-cycling in case the power to the unit is interrupted or a pressure switch opens. The delay is bypassed by placing the timer select jumper across the TEST pins for 0.5 seconds.

NOTE – The board must have a thermostat demand for the bypass function.

PRESSURE SWITCH CIRCUITS

The defrost control includes two pressure switch circuits. The factory-installed high pressure switch (S4) wires are connected to the board's HI PS terminals (figure 5). The board also includes LO PS terminals to accommodate a field-provided low (or loss-of-charge) pressure switch (S87).

During a single thermostat cycle, the defrost control will lock out the unit after the fifth time that the circuit is interrupted by any pressure switch that is wired to the control board. In addition, the diagnostic LEDs will indicate a pressure switch lockout after the fifth occurrence of an open pressure switch (table 3). The unit will remain locked out until power is broken then remade to the control or until the jumper is applied to the TEST pins for 0.5 seconds.

NOTE – The defrost control board ignores input from the loss-of-charge switch terminals during the TEST mode, during the defrost cycle, during the 90-second start-up period, and for the first 90 seconds each time the reversing valve switches heat/cool modes. *If the TEST pins are jumpered and the 5-minute delay is being bypassed, the LO PS terminal signal is not ignored during the 90-second start-up period.*

SERVICE LIGHT CONNECTION

The defrost control board includes terminal connections for a service light which provides a signal that activates the room thermostat service light during periods of inefficient operation.

IMPORTANT

After testing has been completed, properly reposition test jumper across desired timing pins.

DIAGNOSTIC LEDS

The defrost board uses two LEDs for diagnostics. The LEDs flash a specific sequence according to the diagnosis (table 3).

TABLE 3. Defrost Control Board Diagnostic LEDs

DS2 Green	DS1 Red	Condition		
OFF	OFF	Power problem		
Simultaneous Slow Flash		Normal operation		
Alternating Slow Flash		5-min. anti-short cycle delay		
Fault and Lockout Codes				
OFF	Slow Flash	Loss-of-Charge Fault		
OFF	ON	Loss-of-Charge Lockout		
Slow Flash	OFF	High Pressure Fault		
ON	OFF	High Pressure Lockout		

Maintenance

At the beginning of each cooling season, the system should be checked as follows:

OUTDOOR UNIT

- 1 Clean and inspect the condenser coil. You can flush the coil with a water hose.
- 2 The outdoor fan motor is prelubricated and sealed. No further lubrication is necessary.
- 3 Visually inspect connecting lines and coils for evidence of oil leaks.
- 4 Check wiring for loose connections.
- 5 Check for correct voltage at the unit while the unit is operating and while it is off.
- 6 Check amp-draw of the outdoor fan motor. Unit nameplate _____ Actual _____
- 7 Check amp-draw of the compressor. Unit nameplate _____ Actual _____

NOTE – If the owner complains of insufficient cooling, gauge the unit and check the refrigerant charge. Refer to section on refrigerant charging in this instruction.

INDOOR COIL

- 1 If necessary, clean the coil.
- 2 Check connecting lines and coils for evidence of oil leaks.
- 3 If necessary, check the condensate line and clean it.

INDOOR UNIT

- 1 Clean or change filters.
- 2 Adjust the blower speed for cooling. Measure the pressure drop over the coil to determine the correct blower CFM. Refer to the unit information service manual for pressure drop tables and procedure.

- 3 On belt drive blowers, check the belt for wear and proper tension.
- 4 Check all wiring for loose connections.
- 5 Check for correct voltage at the unit (blower operating).
- 6 Check amp-draw on blower motor.
 Unit nameplate _____ Actual _____

Start-Up and Performance Checklist				
Job Name	Job no.		Date	
Job Location	City		State	
Installer	City		State	
Unit Model No Serial No	Service Technician			
Nameplate Voltage				
Rated Load Ampacity Compressor Ampera	ige:			
Maximum Fuse or Circuit Breaker				
Electrical Connections Tight?	ean? 🗋	Supply Voltage (Unit Off)	
Indoor Blower RPM S.P. Drop Over Indoor (Dry)	S.P. Drop Over Indoor (Dry) Outdoor Coil Entering Air Temp			
Vapor Pressure;				
Refrigerant Lines: - Leak Checked? 🗋 Properly Insula	ated?	Outdoor Fan Che	ecked?	
Service Valves: Fully Opened? 🔲 Caps Tight?		Voltage With Cor	npressor Operating	g
SEQUENCE OF OPERATION		THERMOSTAT		
Heating Correct?		Calibrated?	Properly Set?	Level? 🗋