

UNIT INFORMATION

Operating temperature

Storage temperature

range

Corp 1404-L4 (450402) 10/2018

Supersedes 10/2017

Table of Contents

General	1
Cabling Guidelines	1
Network Bus Termination	2
M3 Unit Controller BACnet Module Installation	2
Comfort Sensors	2
General BACnet MS/TP Guidelines	3
Lennox Control Requirements	4
Prodigy Control Mode Options	4
Backup Sensor Modes	4
Control Mode Descriptions	5
Lennox Room Sensor Control	5
Network Room Sensor Control	5
Network Thermostat Control	5
Troubleshooting	5
Analog Output Objects	11
Analog Input Objects	12
Analog Value Objects	14
Room Sensor Setpoints	
M3 Alarm Codes	15
Application Details	15
Appendix A — Time Line of M3 Unit Control Start-up Sequences	32
Appendix B — Supply Airflow Targets	
Appendix C — Blower Operations and Effective	00
Occupancy	34
Appendix D — BACnet [®] Protocol Implementation Con- formance (PIC) Statement	36
Product Description	
BACnet [®] Standardized Device Profile (Annex L)	
BACnet [®] Interoperability Building Blocks (BIBBs) Supported (Annex K)	
Standard Object Types Supported	
Data Link Layer Options	

range	
RH	10-95% RH non-condensing
Field 0	Connections
BACnet [®] MS/TP	See PIC statement on Page 39.
Transceiver	RS-485
Connector	Three-position terminal block (+ G –)
Baud Rate	Selectable 9.6, 19.2, 38.4, 76.8K
Cable Type	Twisted pair w/shield, 22AWG min. Belden type 88761 or 8761. Lennox 27M19, 94L63 or 68M25
Max. Cable Length	4000 ft. repeater is required for longer lengths.
Bus Termination	120 ohm resistor on last module in chain.
Defa	ult Values
device Max_Master	127
device Max_Info_Frames	1
device Object_Identifier	MAC address
device Object_Name	"Lennox_M3_" + MAC address
device Location	"US"
device Location device Description	"US" "Lennox HVAC Controller"
device Description	"Lennox HVAC Controller"
device Description baud rate recommended update	"Lennox HVAC Controller" 38.4k Two minutes (before software v7.08) at least once every 12 minutes

The M3 BACnet[®] Module is compatible with MS/TP EIA-485 daisy-chain networks communicating at 9.6, 19.2, 38.4, and 76.8 kbps.

Connect the BACnet[®] MS/TP network cable to the M3 BACnet[®] module.

- M3 BACnet $^{\otimes}$ module is certified to ANSI/ASHRAE 135-2008 and is BTL Listed.

M3 BACnet[®]

Module

Table 1. M3 BACnet[®] Module Specifications and Default Settings

Environment

-40F to 155F

-40F to 185F

1

- This document is provided to assist in the integration of the prodigy controller to the building automation system.This BACnet module does not require any Lennox
- This BAChet module does not require any Lennox proprietary software or interface in order for the BAChet module to function with the prodigy control system.

General

- The M3 BACnet[®] Module (BM2) allows communication between the Lennox M3 Unit Controller and a BACnet[®] MS/TP network. This module is mounted directly to the M3 Unit Controller board.
- The M3 BACnet[®] Module has been developed to communicate with building automation systems that support the BACnet Application Specific Controller (B-ASC) device profile.

It is compatible with twisted pair, shielded 22AWG minimum cable such as Belden 8761, 88761 and Lennox catalog numbers 27M19, 94L63 or 68M25.

A maximum of 32 M3 BACnet[®] modules can be included per network segment. Up to 127 units can be connected per network segment by using repeater for every 32 devices.

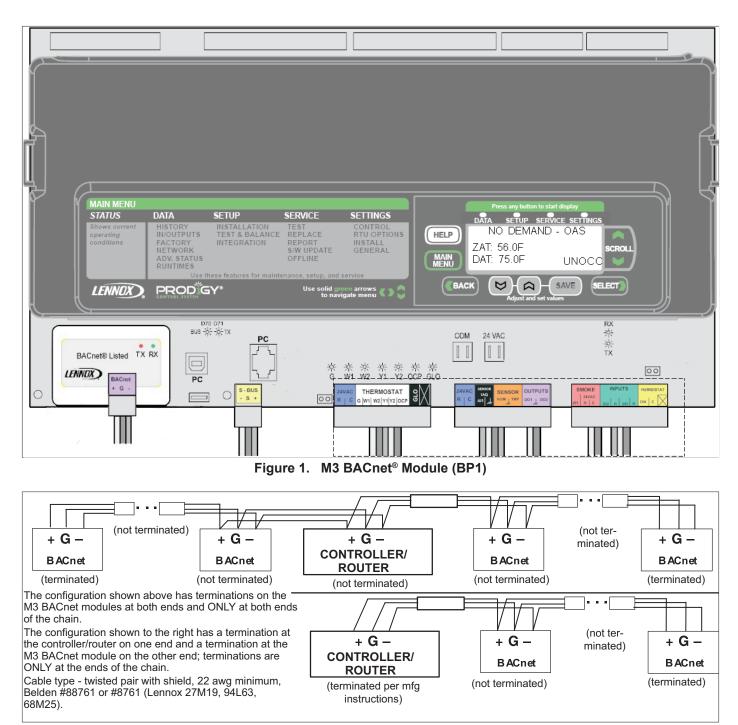
The network cable should be routed using best practices to avoid induced noise. Do not route alongside high voltage wiring or in proximity to high-voltage or high-frequency devices, such as ignition controls and variable frequency drives. The BACnet MS/TP recommended maximum total bus length (without repeater) is 4000 ft. (1219m) applies to this device.

The guidelines provided were established with setting the baud rate no higher than 9.6K. When using higher baud rates we recommend that no more than 20 Lennox BACnet units and 30 devices per router. Since Lennox Energence BACnet units provide access to many objects, Lennox does not recommend use of repeaters in any BACnet network because of the amplified noise they tend to propagate on the network.

Network Bus Termination

When the M3 BACnet[®] Module is at the end of a daisy chain, connect a 120 ohm resister across the + and - terminals. Every BACnet[®] MS/TP chain should have a termination at each end of the chain (exactly two terminations).

A qualified systems integrator with adequate training and experience is required to integrate and commission the M3 BACnet Module into a third party BACnet building automation system. A BACnet configuration software tool is required to commission the BACnet network.


M3 Unit Controller BACnet Module Installation

- Connect the BACnet SmartWire connector as shown in "Figure 1. M3 BACnet® Module (BP1)" on page 3.
- 2. No adjustment is necessary to the BACnet module unless the module is at the end of a daisy-chained configuration. In that case, it is recommended to place a 120 ohm resistor across the + and terminals.
- **3.** Upon powering up the M3 Unit Controller, the BACnet module will need to be enabled and configured. Use the following procedures to complete both tasks:
- 4. To enable the BACnet module, go to SETUP > INSTALL and run the setup wizard. When Configuration ID 1 appears on the screen, configure position 5 as B. This will enable the BACnet[®] module.
- 5. To configure the BACnet Network, go to SETUP > NETWORK INTERGRATION = BACNET > BACNET ADDRESS = > BACNET BAUD RATE = >
- **NOTE:** Additional settings will be required to complete after entering the baud rate.

Comfort Sensors

To **enable** the M3 Unit Controller to use Comfort Sensors, use the following procedure:

- 1. Confirm that the **Configuration ID 1**, position **5** has been set to **B** as mentioned in the previous section.
- 2. Go to SETUP and select NETWORK INTEGRATION.
- 3. Use the Adjust and set values arrows to display **BACNET** and press the SAVE button to continue.
- 4. Adjust the **BACNET ADDRESS** if required and press **SAVE** button to continue.
- 5. Adjust the **BACKNET BAUD RATE** if required and press **SAVE** button to continue.
- 6. CONTROL MODE will need to be set to ROOM SENSOR. Press the SAVE button to continue.
- 7. NETWORK SENSOR > CO2 needs to be set to NO. Press the SAVE button to continue.
- 8. NETWORK SENSOR > RELATIVE HUMIDITY needs be set to NO. Press the SAVE button to continue.
- 9. NETWORK SENSOR > TEMPERATURE will need to be set to NO (mandatory).
- **NOTE:** Additional settings will be required to complete after completing step 9. Once the above steps are completed the Comfort Sensor output will be accepted by the system.
- **NOTE:** If Comfort Sensor input is still not working, cycle power to the M3 Unit Controller.
- **NOTE:** Alert Code 110 might be displayed during initial boot-up of the system if communications from the Comfort Sensor(s) is not received. Once communication is established the Alert Code 110 will continue to be displayed on the screen for historical purposes. Only two alerts codes can be listed on the home screen at a time, so eventually if other alert codes become active, Alert Code 110 will only be visible in the history section. Go to DATA > ADVANCE STATUS > CURRENT ALARMS.

Figure 2. LENNOX BACnet Topology

General BACnet MS/TP Guidelines

- 1. Set all BACnet[®] devices on an MS/TP network to consecutive MAC addresses, starting at 1, so that there are no gaps between MAC address values.
- Set Max_Master device property on all devices to match the largest MAC address on the network. Note, this could be larger than existing network to allow for adding devices to the network without the need to adjust the Max_Master property in the future. (Contact Lennox Technical Support for more detailed information).
- **3.** Use ReadPropertyMultiple service instead of Read Property service when reading multiple analog inputs or values.
- **4.** Do not exceed the maximum recommended length (1200 M / 4000 ft.) for any MS/TP segment.

- **5.** All MS/TP network segment ends should be terminated per control provider instructions.
- To minimize communication compatibility problems, BACnet gateways or BACnet devices that are NOT BTL listed should be avoided.
- 7. The guidelines provided were established with setting the baud rate no higher than 9.6K. When using higher baud rates we recommend that no more than 20 Lennox BACnet units and 30 devices per router. Since Lennox Energence BACnet units provide access to many objects, Lennox does not recommend use of repeaters in any BACnet network because of the amplified noise they tend to propagate on the network.

Lennox Control Requirements

Since the M3 controller does not "store" any commands sent, all BACnet control points utilized must be updated after every M3 controller reset.

If any of the following BACnet Points are being used, they must be updated every five (5) minutes. If they are not received within five (5) minutes, an alarm will be raised, some of which will only clear with a local controller reset. To ensure at least two (2) tries within the given minute time out, we recommend a two minute send interval:

- Space Temp AO113:
- RH property ID 536
- CO2 property ID 537

If any of the following BACnet Points are being used, they must be updated every 15 minutes. If they are not received within 15 minutes, an alarm will be raised. To ensure at least two (2) tries within the give minute time out, we recommend a seven (7) minute send interval:

- AO101 (network thermostat remote demand mode only)
- AO109, AV130-133
- · AO104 if not using setpoint control

We recommend not sending any single data point more frequently than two minute intervals so as not to overload the network. In general, less traffic is better.

The M3 unit controller defaults to occupied state for local control following loss of network data. If you prefer the default state to be set to unoccupied please change the value of Parameter 225 to 0.

NOTE: Unit Run Operation (Parameter 225) can only be modified using the Lennox unit controller Software (UCS).

The M3 Controller does not require a JUMPER for occupancy at the M3 Controller terminals for ZONE/ REMOTE modes of operations.

Recommend the refresh rates on analog inputs be at least two minutes or more.

Lennox does not support BACnet change of value (COV) mode of operation.

Prodigy Control Mode Options

These are the control mode descriptions from the M3 controller menu

Menu Setting Path:

SETUP > NETWORK INTEGRATION > NETWORK = BACNET > BACNET MAC ADDRESS= > BACNET BAUD RATE = > CONTROL MODE=

MONITOR ONLY - In this mode, the rooftop unit is controlled by M3 thermostat inputs. The M3 will not respond to set points or application mode demands related to heating/ cooling sent over the network.

ROOM SENSOR - In this mode, the rooftop unit is controlled by room temperature set points (AO109, AV130 - AV133) and occupancy state (AO104). Room temperature is monitored and compared to the appropriate room temperature set points. Room temperature can be provided by local sensor or network value (AO113).

NETWORK THERMOSTAT - In this mode, the rooftop unit is controlled by network demands for heating/cooling in the

form of application mode commands (AO101). This mode assumes a network thermostat sending remote demands AO101 values 208, 209 and 224 - 236.

ZONE and **REMOTE** - Occupancy demands must be sent using AO103, AO104 or AO107. See Appendix C for further details.

Backup Sensor Modes

Under certain conditions, the Prodigy controller will go into one of the backup modes of operation as described in Prodigy M3 Controller manual (506215-01).

When backup sensor mode is entered, a code 93 will be broadcast over BACnet as well as displayed at the prodigy controller display. Backup mode options available are:

Menu Setting Path:

SETUP > NETWORK INTEGRATION > NETWORK = BACNET > BACNET MAC ADDRESS= > BACNET BAUD RATE = >CONTROL MODE= > NETWORK SENSOR =

- **Return Air Temperature** (RAT) sensor located on all prodigy controlled equipment is the secondary sensor resource
- **Thermostat** inputs are the secondary sensor input source requires equipment reset in order to recover once primary sensor data is corrected.
- Room Sensor inputs are the secondary sensor input source when network thermostat is set as the primary control
- None is when the unit is idle or off.

Control Mode Descriptions

Lennox Room Sensor Control

Room Sensor must be installed and wired to the M3 SENSOR inputs (see "Figure 1. M3 BACnet[®] Module (BP1)" on page 3). M3 may be controlled using BACnet commands AO109 or AV130-133.

After power up, the rooftop unit (RTU) will be in IDLE mode for up to two minutes as specified during the above setup procedure (defaults to two minutes), unless set points are sent over BACnet.

Controller Sequence:

- Set points not sent: Room sensor must be installed and wired to M3 sensor inputs. After power up, RTU will be in IDLE mode for up to 160 seconds (specified by P 133, defaults to 160 seconds), unless set points are sent over BACnet. RTU will switch over to room sensor mode operation specified during setup procedure. M3 will utilize specified temperature set points and zone sensor data for normal operation. M3 will switch over to room sensor backup mode operation if there is no room sensor temperature input.
- 2. Set points are sent over BACnet before default two minutes start-up delay: RTU will operate based on these set points and the temperature read from the room sensor. In the event of a subsequent network communication failure (no application level BACnet packets for 15 minutes), RTU will reset.

Network Room Sensor Control

Parameter values are expected to be as follows:

Menu Setting Path:

- SETUP > NETWORK INTEGRATION > NETWORK = BACNET > BACNET MAC ADDRESS= > BACNET BAUD RATE = >CONTROL MODE= ROOM SENSOR
- SETUP > NETWORK INTEGRATION > NETWORK = BACNET > BACNET MAC ADDRESS= > BACNET BAUD RATE = >CONTROL MODE= ROOM SENSOR = > TEMPERATURE = YES.
- **NOTE:** Other sensor input data options are available. Please refer to Insert reference to M3 Application Guide for further details.

Controller Sequence:

- Network sensor data not sent: Lennox zone sensor must be installed and wired to M3 sensor inputs. After power up, RTU will be in IDLE mode for up to five minutes awaiting network sensor data (Alarm 110 WAITING FOR NETWORK SENSOR DATA). After five minutes, M3 will enter backup sensor mode of operation displaying Alarm 93. M3 will utilize specified temperature set points and available sensor data for normal operation.
- 2. Network sensor data are sent over BACnet before five minute delay: RTU will operate based on specified set points and the network sensor data. In the event of a subsequent network communication failure (no network sensor data for five minutes), RTU will display Alarm 73 (NETWORK SENSOR ERROR). If and when all the BACnet network sensor inputs are received, Alarm 73 will be removed.

Network Thermostat Control

Parameter values are expected to be as follows:

Menu Setting Path:

- SETUP > NETWORK INTEGRATION > NETWORK = BACNET > BACNET MAC ADDRESS= > BACNET BAUD RATE = >CONTROL MODE= > NETWORK THERMOSTAT
- SETUP > NETWORK INTEGRATION > NETWORK = BACNET > BACNET MAC ADDRESS= > BACNET BAUD RATE = >CONTROL MODE= ROOM SENSOR = > TEMPERATURE = NO.

Controller Sequence:

- Network demands not sent: After power up, RTU will be in IDLE mode for up to five minutes awaiting network demand data (AO101 range 208, 209, 224 – 236). After five minutes, M3 will enter backup sensor mode of operation displaying "Alarm 93 BACKUP MODE" and also broadcast Alarm 93 over BACnet. M3 will utilize specified temperature set points and available sensor data for backup mode operation.
- 2. Network demands are sent over BACnet before five minute delay: RTU will operate based on these network demands. In the event of a subsequent network communication failure (no BACnet network demand packets for 15 minutes), RTU will switch over to Remote Demand backup mode operation specified in:

Menu Setting Path:

SETUP > NETWORK INTEGRATION > NETWORK = BACNET > BACNET MAC ADDRESS= > BACNET BAUD RATE = >CONTROL MODE= > NETWORK THERMOSTAT > NETWORK SENSOR = > OCC BLOWER MODE = > BACKUP MODE =

The RTU will display Alarm 93 BACKUP MODE.

Troubleshooting

Use table 2 as a guide once the BACnet network is set up and operating.

Table 2. Communication Check

LED	Action
BACnet communication transmit and receive LEDs flash.	None. Indicates normal communication.
BACnet communication LEDs are off or intermittently go off for periods of 1 second or longer.	 Check BACnet network connections. Make sure BACnet network is commissioned. Make sure each unit has a unique MAC address in the range of 0 to 127. Verify same baud rate on all devices.
GREEN only	ON BACNET NETWORK NO SEND/ RECIEVE = Action - none
YELLOW only	NOT ON NETWORK - 1. Check BACnet network connections.

Control following a connection failure depends on where the failure occurs, and which input device has been used.

Property name	Property Value	Data type	Access
Description	"Lennox RTU HVAC Controller"	Char String	RW
Object_Identifier*	2 (default value)	Integer (1-4194302)	RW
Object_Name	Lennox_M3_2 (default value)	Char String (32 char. max.)	RW
Vendor name	Lennox	Char String	R
Model name	"M3"	Char String	RW
Firmware revision	Firmware version dependent	Char String	R
Application software revision	Firmware version dependent	Char String	R
Location	Location	Char String (32 char. max.)	RW
Vendor identifier	255	Integer	R
Max APDU length accepted	480	Integer	R
Max Master	480	Integer (1-127)	RW
Segmentation supported	FALSE	Boolean	R
Max Info frames	1	Integer (1-65535)	RW
Unit serial number	Factory set	Integer	R

Table 3. Device Objects and Property Ranges

* The default Object_Identifier is the MSTP MAC address which is set locally. To set it to a different value, it must be changed by the front end software.

The Lennox M3 BACnet module does not support COV (Change of Value).

			D	evi	ce C	bje	cts	
Property	Description	Compressor	Heating	Blower	Economizer	Space Air	Discharge Alr	Outdoor Air
Object_Identifier	Object_Identifier is a Read Only (RO) property, used to identify the Object and it is unique within Lennox BACnet Device.	•	•	•	•	•	•	•
Object_Name	Object_Name is a Read Only (RO) property use to name the Object and is unique within the BACnet Device. The minimum length of the string is one character.	•	•	•	•	•	•	•
Object_Type	Object_Type is a Read Only (RO) property and is one of the following: OBJECT_LNX_COMPRESSOR, OBJECT_LNX_HEATING, OBJECT_LNX_BLOWER, OBJECT_LNX_ECONOMIZER, OBJECT_LNX_INDOOR_AIR, OBJECT_LNX_DISCHARGE_AIR, OBJECT_LNX_OUDOOR_AIR.	•	•	•	•	•	•	•
Out_Of_Service	Out_Of_Service is a Read Only (RO) property that indicates whether the physical component that the object represents is in service or not.	•	•	•	•			
Lennox_Object_ Installed	Lennox_Object_Installed is a Read Only (RO) property that indicates whether the physical component that the object represents is installed in the RTU or not. Unless the value of this property is TRUE, all other properties of the Compressor, Heat Stage, or Economizer object instance are invalid.	•	•		•			
Lennox_Object_ Running	Lennox_Object_Running is a Read Only (RO) property that indicates that the component is not running if the value is zero and that the component is running if a value greater than zero (range: 0, 100). Components capable of reporting values of more granular detail, i.e. all the integer values in the range of $0 - 100$, as percent capacity utilization, then that value is reported by this property. Other components will only show ON or OFF.	•	•	•	•			
Lennox_Object_Run_ Time	Lennox_Object_Run_Time is a Read Only (RO) property that indicates in minutes the time the corresponding component has been running (range: 0, 4294967295). Internally the time that the compressor has been running is stored into EEPROM once every hour. Therefore, in the event power turns off, the value returned when power turns back on will be the last stored value. This can result in a loss of run-time value up to an hour for each power cycle event.	•	•	•	•			
Lennox_Object_Min_ Cycle_Time	Lennox_Object_Min_Cycle_Time is a Read Only (RO) property that indicates in seconds the minimum time the corresponding component must run in any given cycle (range: 0, 4294967295). This prevents short cycles to help protect the component. (This property does not apply to Electric Heat Stage components.)	•	•					
Lennox_Object_Cycle_ Count	Lennox_Object_Cycle_Count is a Read Only (RO) property that indicates the number of cycles the corresponding component has been running (range: 0, 4294967295).	•	•	•	•			
Lennox_Object_Error	Lennox_Object_Error is a Read Only (RO) property that reports any error code the corresponding component may have encountered (range: 0, 255). A value of 0 means no error while any non-zero value represent an error.	•	•	•	•			
Lennox_Object_Heat_ Type	Lennox_Object_Heat_Type is a Read Only (RO) property that indicates the source of power used to run the component (range: 0, 255). The interpreted values are: 1-Gas; 2-Electric; 3-Heat Pump mode.		•					
Object_Temperature	Object_Temperature is a Read Write (RW) property that Indicates the temperature. The units of measurement for this property are Degrees Fahrenheit.					•	•	•
Object_Relative_ Humidity	Object_Relative_Humidity is a Read Write (RW) property that represents relative humidity of space air, measured as a percentage.					•		
Object_CO2_Level	Object_CO2_Level is a Read Write (RW) property that indicates the CO2 levels in the space air, measured in PPM.					•		
Object_Duct_Static_ Pressure_Setpoint	Object_Duct_Static_Pressure_Setpoint is a Read Only (RO) property that represents the Duct Static Pressure Setpoint of Discharge Air, measured in inches of water column (range: 0, 5).					•		

Property	Property ID	Data type and range	Access	Description
Object_Identifier	75	Integer (0-4194302)	Read Only	Numeric code that identifies the object (unique within Lennox BACnet Device).
Object_Name	77	Character string of 1 character (min.) to 32 characters (max.)	Read Only	Identifies the Object and is unique within the BACnet Device.
Object_Type	79	136 (OBJECT_LNX_ COMPRESSOR)	Read Only	Indicates membership in a particular object type class.
Out_Of_Service	81	TRUE or FALSE	Read Only	Indicates whether the compressor is in service or not.
Lennox_Object_ Installed	513	TRUE or FALSE Read Only Unless proper		Indicates whether the compressor is installed or not. Unless the value of this property is TRUE, all other properties of the Compressor object instance are invalid.
Lennox_Object_ Running	514 Integer (0 - 100) Read On		Read Only	Indicates that the compressor is not running if the value is zero and that the compressor is running if a value greater than zero (range: 0, 100).
Lennox_Object_ Run_Time	515	Integer (0 - 4294967295) minutes	Read Only	Indicates the time the compressor has been running. Internally, the time that the compressor has been running is stored into EEPROM once every hour. Therefore, in the event power turns off, the value returned when power turns back on will be the last stored value. This can result in a loss of run-time value up to an hour for each power cycle event.
Lennox_Object_ Min_ Cycle_Time	516	Integer (0 - 4294967295) seconds	Read Only	Indicates the minimum time the compressor must run in any given cycle. This prevents short cycles to help protect the compressor.
Lennox_Object_ Cycle_Count	517	Integer (0 - 4294967295) cycles	Read Only	Indicates the number of cycles the compressor has been running.
Lennox_Object_ Error	518	Integer (0 - 255)	Read Only	Reports any error code the compressor may have encountered. A value of 0 means no error while any non-zero value represent an error.

Table 5. Lennox Proprietary Objects - Compressor (Object ID: 136)

Table 6. Lennox Proprietary Objects - Blower (Object ID: 129)

Property	Property ID	Data type and range	Access	Description
Object_Identifier	75	Integer (0-4194302)	Read Only	Numeric code that identifies the object (unique within Lennox BACnet Device)
Object_Name	77	Character string of 1 character (min.) to 32 characters (max.)	Read Only	Identifies the Object and is unique within the BACnet Device.
Object_Type 79		129 (OBJECT_LNX_BLOWER) Read Only		Indicates membership in a particular object type class.
Out_Of_Service	81	TRUE or FALSE R		Indicates whether the blower is in service or not.
Lennox_Object_ Running	514	Integer (0 - 100)	Read Only	Indicates that the blower is not running if the value is zero and that the blower is running if a value greater than zero (range: 0, 100 or possible values).
Lennox_Object_ Run_Time	515	Integer (0 - 4294967295) minutes	Read Only	Indicates the time the blower has been running. Internally, the time that the blower has been running is stored into EEPROM once every hour. Therefore, in the event power turns off, the value returned when power turns back on will be the last stored value. This can result in a loss of run-time value up to an hour for each power cycle event.
Lennox_Object_ Cycle_Count	517	Integer (0 - 4294967295) cycles	Read Only	Indicates the number of cycles the blower has been running

Table 6. Lennox Proprietary Objects - Blower (Object ID: 129)

Property	Property ID	Data type and range	Access	Description
Lennox_Object_ Error	518	Integer (0 - 255)	Read Only	Reports any error code the blower may have encountered. A value of 0 means no error while any non-zero value represent an error.

Table 7. Lennox Proprietary Objects - Heating (Object ID: 130)

Property	Property ID	Data type and range	Access	Description
Object_Identifier	75	Integer (0-4194302)	Read Only	Numeric code that identifies the object (unique within Lennox BACnet Device).
Object_Name	77	Character string of 1 character (min.) to 32 characters (max.)	Read Only	Identifies the Object and is unique within the BACnet Device.
Object_Type	79	130 (OBJECT_LNX_HEATING)	Read Only	Indicates membership in a particular object type class.
Out_Of_Service	81	TRUE or FALSE	Read Only	Indicates whether the heating device is in service or not.
Lennox_Object_ Installed	513	TRUE or FALSE	Read Only	Indicates whether the heating device is installed or not. Unless the value of this property is TRUE, all other properties of the heating object instance are invalid.
Lennox_Object_ Running			Read Only	Indicates that heating is not running if the value is zero and that heating is running if a value greater than zero (range: 0, 100 or possible values).
Lennox_Object_ Run_Time	515	Integer (0 - 4294967295) minutes	Read Only	Indicates the time heating has been running. Internally, the time that heating has been running is stored into EEPROM once every hour. Therefore, in the event power turns off, the value returned when power turns back on will be the last stored value. This can result in a loss of run-time value up to an hour for each power cycle event.
Lennox_Object_ Min_ Cycle_Time	516	Integer (0 - 4294967295) seconds	Read Only	Indicates the minimum time heating must run in any given cycle. This prevents short cycles to help protect the compressor (This property does not apply to Electric Heat Stage components).
Lennox_Object_ Cycle_Count	517	Integer (0 - 4294967295) cycles	Read Only	Indicates the number of cycles heating has been running.
Lennox_Object_ Error	518	Integer (0 - 255)	Read Only	Reports any error code heating may have encountered. A value of 0 means no error while any non-zero value represent an error.
Lennox_Object_ HeatType	533	Integer: Values are: 1-Gas; 2-Electric; 3-Heat Pump mode	Read Only	Indicates the source of power used for heating (range: 0, 255).

Table 8.	Lennox Pro	prietary Ob	jects - Econo	mizer (Ob	ject ID: 131)
----------	------------	-------------	---------------	-----------	---------------

Property	Property ID	Data type and range	Access	Description
Object_Identifier	75	Integer (0-4194302)	Read Only	Numeric code that identifies the object (unique within Lennox BACnet Device).
Object_Name	77	Character string of 1 character (min.) to 32 characters (max.)	Read Only	Identifies the Object and is unique within the BACnet Device.
Object_Type	79	131 (OBJECT_LNX_ ECONOMIZER)	Read Only	Indicates membership in a particular object type class.
Out_Of_Service	81	TRUE or FALSE	Read Only	Indicates whether the economizer is in service or not.
Lennox_Object_ Installed	513	TRUE or FALSE	Read Only	Indicates whether the economizer is installed or not. Unless the value of this property is TRUE, all other properties of the economizer object instance are invalid.
Lennox_Object_ Running	514	Integer (0 - 100)	Read Only	Indicates that the economizer is not running if the value is zero and that the economizer is running if a value greater than zero (range: 0, 100 or possible values).

Table 6. Lennox Frophetary objects - Leonomizer (object ib. 101)							
Property	Property ID	Data type and range	Access	Description			
Lennox_Object_ Run_Time	515	Integer (0 - 4294967295) minutes	Read Only	Indicates the time the economizer has been running. Internally, the time that the economizer has been running is stored into EEPROM once every hour. Therefore, in the event power turns off, the value returned when power turns back on will be the last stored value. This can result in a loss of run-time value up to an hour for each power cycle event.			
Lennox_Object_ Cycle_Count	517	Integer (0 - 4294967295) cycles	Read Only	Indicates the number of cycles the economizer has been running.			
Lennox_Object_ Error	518	Integer (0 - 255)	Read Only	Reports any error code the compressor may have encountered. A value of 0 means no error while any non-zero value represent an error.			

Table 8. Lennox Proprietary Objects - Economizer (Object ID: 131)

Table 9. Lennox Proprietary Objects - Discharge Air (Object ID: 133)

Property	Property ID	Data type and range	Access	Description
Object_Identifier	75	Integer (0-4194302)	Read Only	Numeric code that identifies the object (unique within Lennox BACnet Device)
Object_Name	77	Character string of 1 character (min.) to 32 characters (max.)	Read Only	Identifies the Object and is unique within the BACnet Device.
Object_Type	79	133 (OBJECT_LNX_DISCHARGE_ AIR)	Read Only	Indicates membership in a particular object type class.
Object_ Temperature	534	Real: Degrees Fahrenheit (-8.75 to 164.45)	Read Only	Indicates the temperature of the discharge air.
Object_Duct_ Static_Pressure_ Setpoint	535	Integer: Values are 0 - 5 (inches of water column)	Read Only	Represents the Duct Static Pressure Setpoint of discharge air.

Table 9. Lennox Proprietary Objects - Space Air (Object ID: 133)

Property	Property ID	Data type and range	Access	Description
Object_Identifier	75	Integer (0-4194302)	Read Only	Numeric code that identifies the object (unique within Lennox BACnet Device)
Object_Name	77	Character string of 1 character (min.) to 32 characters (max.)	Read Only	Identifies the Object and is unique within the BACnet Device.
Object_Type	79	133 (OBJECT_LNX_INDOOR_ AIR)	Read Only	Indicates membership in a particular object type class.
Object_ Temperature	534	Real: Degrees Fahrenheit (36.25 to 100)	Read Write	Indicates the temperature of the space air.
Object_Relative_ Humidity	536	Real: Values are 0 to 100 (%RH)	Read Write	Represents relative humidity of space air.
Object_CO2_ Level	537	Real: Values are 300 to 2000 (PPM)	Read Write	Indicates the CO2 levels in the space air.

Table 10. Table 10. Lennox Proprietary Objects - Outdoor Air (Object ID: 133)

Property	Property ID	Data type and range	Access	Description
Object_Identifier	75	Integer (0-4194302)	Read Only	Numeric code that identifies the object (unique within Lennox BACnet Device)
Object_Name	77	Character string of 1 character (min.) to 32 characters (max.)	Read Only	Identifies the Object and is unique within the BACnet Device.
Object_Type	79	133 (OBJECT_LNX_OUDOOR_ AIR)	Read Only	Indicates membership in a particular object type class.
Object_ Temperature	534	Real: Degrees Fahrenheit (-30.62 to 131.56)	Read Write	Indicates the temperature of the outdoor air.

Analog Output Objects

Optional Properties Supported: Optional Writable Properties: Min_Pres_Value, Max_Pres_Value Out_Of_Service

Analog output object's Overridden status flag set if the equivalent setpoint in the M3 is written to by some Sbus device.

Object ID	Object Name	Units	Min. Value	Max. Value	Valid Values within Range
101	Application Mode Control	None	0	255	0,1,3,6,9,208,209,216,217,218,224- 254,255*
102	Outdoor Air Min Pos Control	Percent	0	255	all
103	Occupancy Override Control	None	0	255	all
104	Occupancy Scheduler Control	None	0	255	all
107	Occupancy Sensor Input	None	0	255	all
108	Space Dehumidification Setpoint	Percent	0	100	all
109	Temperature Setpoint (abs)	Deg. F	36.25	100	all
110	Temperature Setpoint Offset	Deg. F	-32	31.75	all
113	Space Temperature Input	Deg. F	36.25	100	all
114	Emergency Override Control	None	0	255	all
115	Compressor Enable Control	None	0	255	all
117	Primary Heat Enable Control	None	0	255	all
119	Auxiliary Heat Enable Control	None	0	255	all
123	Duct Static Setpoint	In. of water	0	5	all
124	Building Static Setpoint	In. of water	-0.5	0.5	all
125	Discharge Air Cooling Setpoint	Deg. F	40	100	-9,40-100*
126	Discharge Air Heating Setpoint	Deg. F	60	140	-9,60-140*
127	Supply Fan Capacity Input	Percent	33	255	all*
128	Exhaust Fan Capacity Input	Percent	33	255	all
129	Set Economizer Outdoor Air Suitable	None	0	255	all

Table 11. Analog Output Objects List

Analog Input Objects

Optional Properties Supported: Optional Writable Properties:

None

Out_Of_Service (AI239 - AI252, AI274 - AI285 only)

Table 12. Analog Input Objects List

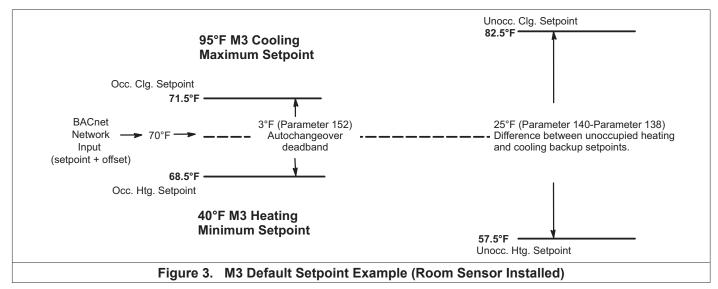
Object ID	Object Name	Units	Data Range
198	Mac Address	None	0 - 127
199	IMC Address	None	1-31
200*	IMC Version[4]	None	0 - 127
201*	IMC Version[5]	None	0 - 127
202*	IMC Version[6]	None	0 - 127
203*	IMC Version[7]	None	0 - 127
204*	IMC Version[8]	None	0 - 127
205*	IMC Version[9]	None	0 - 127
206*	IMC Version[10]	None	0 - 127
207*	IMC Version[11]	None	0 - 127
231	Unit ID	None	0 - 127
232	Unit Status	None	0 - 255
239	Space Temperature	Deg. F	63.75 - 100.00
240	Discharge Air Temperature	Deg. F	-8.7 – 164.4
241	Effective Occupancy	None	0 - 2
242	Local Outside Air Temperature	Deg. F	-30.6 – 131.6
243	Local Space Temperature	Deg. F	63.75 – 100.00
244	Outside Air Damper	Percent	0 - 100, 255
245	Heat Primary	Percent	0 – 100
246	Heat Secondary	Percent	0 – 100
247	Cool Primary	Percent	0 – 100
248	Economizer Enabled	Percent	0, 1, 255
250	Supply Fan Status	Percent	0 - 100
252	Space Temperature Set Point (Effective)	Deg. F	40.0 - 95.0
253	Current Error	None	0 - 255
254	Error Pointer	None	0 – 83
255	Most recent Error 1	None	1 - 255
256	Most recent Error 2	None	1 - 255
257	Most recent Error 3	None	1 - 255
258	Most recent Error 4	None	1 - 255
259	Most recent Error 5	None	1 - 255
260	Most recent Error 6	None	1 - 255
261	Most recent Error 7	None	1 - 255
262	Most recent Error 8	None	1 - 255
263	Most recent Error 9	None	1 - 255
264	Most recent Error 10	None	1 - 255
274	Space CO2 Sensor (Effective)	Parts-per-million	0 - 2000
275	Space CO2 Sensor (Local)	Parts-per-million	0 - 2000
276	Space Humidity (Effective)	Percent	0 - 100

Table 12. Analog Input Objects List

Object ID	Object Name	Units	Data Range	
277	Space Humidity (Local)	Percent	0 - 100	
278	Dehumidification Set Point (Effective)	Percent	0 - 100	
279	Dehumidification Status	None	0 - 2	
281	Return Air Temperature	Deg. F	-8.7 – 164.4	
282	Building Static Pressure	Inches of water	-0.5 - 0.5	
283	Duct Static Pressure	Inches of water	0 - 5.00	
285	Exhaust Fan Status	Percent	0 - 100	
286	Supply airflow status	CFM	0 - 480 cfm/ton**	
287	Blower motor speed	RPM	0 - 1500	
288	Blower motor torque	Percent	0 - 100	
289	Outdoor airflow	CFM	0 - 480 cfm/ton**	
	* Not recommended for new ir	stallations; legacy support of	only	

** Multiply the tonnage of the RTU with the value in CFM/ton to derive the value in CFM units.

Analog Value Objects


Optional Properties Supported:	None
Optional Writable Properties:	Present_Value

Object ID	Object Name	Units	Min. Value	Max. Value	Valid Values within Range	Note	
1	Baud Rate Setting	None	9600	76800	9600, 19200, 38400, 76800		
130	Heating Occupied Setpoint	Deg. F	40	95	all	For occupied and unoccupied	
131	Cooling Occupied Setpoint	Deg. F	40	95	all	 set points considered separately, the heating setpoint 	
132	Heating Unoccupied Setpoint	Deg. F	40	95	all	must be lower than the cooling setpoint by at least the auto-	
133	Cooling Unoccupied Setpoint	Deg. F	40	95	all	 changeover deadband value set in M3 P153 (default 3°F). 	
134	Supply airflow Low Speed Target	CFM		1			
135	Supply airflow High Speed Target	CFM					
136	Supply airflow Medium Low Speed Target	CFM	 Refer to the Appendix B for the valid value ranges of these parameters for an A box. Object IDs 136 and are not applicable to A box Multiply the tonnage the RTU with the val 				
137	Supply airflow Medium High Speed Target	CFM					
138	Supply airflow Heat Mode Target	CFM					
139	Ventilation airflow Target	CFM	in CFM/ton to derive value in CFM units.				
140	Smoke airflow Target	CFM					
141	Outdoor airflow target	CFM	0 150 cfm/ cfm/ All ton ton				

Table 13. Analog Value Objects List

Room Sensor Setpoints

- The M3 typically uses four set points and the zone temperature to operate the unit when a zone sensor is installed.
- When using the AO:109 single setpoint input, the M3 will use the zone temperature setpoint and Parameter 152 to determine the heat / cool setpoint in the occupied mode. During the unoccupied mode, the M3 will use the zone temperature setpoint and the difference between Parameter 140 and Parameter 138.
- See "Figure 3. M3 Default Setpoint Example (Room Sensor Installed)" for an example of set points when the M3 is
 operating using parameter default values.
- As an alternative, the individual set points AV:130-133 may be used. The M3 uses whatever were the last set points received, whether from AO:109-110, or AV:130-133.

M3 Alarm Codes

See the M3 user guide for a list of alarm codes.

Application Details

Object Name:	Application Mode Control			
Object Type:	AO (Analog Output)			
Object ID:	101			
Object Units:	(95) No_Units			
Value = (See tables below)				

Set the application mode input to Value.

The M3 controller can be set locally during commissioning to operate in either of two modes: remote zone sensor control mode (with local or remote zone sensor), or remote thermostat control mode. Several application mode command values are recognized by either M3 mode, while some can only be used when the M3 is in the remote thermostat control mode.

Table	e 14. Common Appi	ication Mode Values
Value	Mode	Description
0 \$00	AUTO	Heating or cooling. Default after reset.
1 \$01	HEAT	Heating only.
3 \$03	COOL	Cooling only.
6 \$06	OFF	Unit off.
9 \$09	FAN ONLY	No heating or cooling allowed.
255 \$FF	NUL	Same as AUTO.
208 \$D0	FAN AUTO	Main fan (blower) auto. Default after reset.
209 \$D1	FAN ON	Main fan (blower) on.
216 \$D8	EXHAUST AUTO	Power exhaust fan auto. Default after reset.
217 \$D9	EXHAUST1 ON	First stage power exhaust fan on.
218 \$DA	EXHAUST1 OFF	1st stage power exhaust fan off.
219 \$DB	EXHAUST2 ON	2nd stage power exhaust fan on.
220 \$DC	EXHAUST2 OFF	2nd stage power exhaust fan off.
221 \$DD	EXHAUST ON	Both stages of power exhaust fan on.
222 \$DE	EXHAUST OFF	Both stages of power exhaust fan off.
254 \$FE	RESET	Force controller reset.

Table 14. Common Application Mode Values

The four command groups (0-9), (208-209), (216-222), and (224-236, see below) are independent of each other. Selecting a command from one group does not affect any previously sent command from another group. Except for OFF and RESET, which also set FAN AUTO, EXHAUST AUTO, and heat/cool demand IDLE.

AUTO is the default application mode input. When in a remote zone sensor mode, AUTO allows the M3 control

to generate heating and cooling demands based on zone temperature and zone temperature setpoint. Auxiliary functions such as dehumidification or emergency override (i.e. smoke mode) will still operate as needed. Also the blower and exhaust fan functions operate.

HEAT and COOL allow the servicing of only heating or cooling demands. These set a mode only, and do not generate a demand.

Application mode OFF is a unit-disable state, causing the controller to become idle, and clearing all outputs and timers. All outputs are kept off while application mode is OFF. Since this is a complete unit-disable command, it should not be used to turn off heating and cooling demands as part of remote thermostat operation - use 224 IDLE for that purpose. See below.

Application mode FAN ONLY disables heating and cooling operation. No effect on fan operation. Return to normal operation with AUTO, HEAT, or COOL.

Application modes FAN ON and FAN AUTO are used to turn on the main unit fan (blower), or return it to automatic operation.

Application modes for EXHAUST ON are used to turn on/off a power exhaust fan, or to return it to automatic operation. The M3 may delay up to 30 seconds before responding to an exhaust command. These commands apply to single-, two-, and variable-speed power exhausts. A variable-speed exhaust is enabled here, while the speed is adjusted using AO:128, the Exhaust Fan Capacity Input.

Application mode RESET causes the system to reset itself and go through the controller start-up and initialization routines. This takes about 8 seconds in an M3 controller, during which time the analog and digital inputs are settling to correct values. The controller will return to AUTO operation.

AUTO, FAN AUTO and EXHAUST AUTO are the defaults after reset.

Application Modes Specific To Remote Thermostat Operation

These values are only recognized if the M3 control is placed in a remote thermostat mode of operation (set locally during commissioning).

Value	Mode	Y2	Y1	W2	W1	Description
224 \$E0	IDLE	0	0	0	0	Heat / Cool off. Default after reset.
228 \$E4	COOL1	0	1	0	0	Cool 1.
232 \$E8	COOL2	1	0	0	0	Cool 2.
236 \$EC	COOL3	1	1	0	0	Cool 3. Full cooling.
225 \$E1	HEAT1	0	0	0	1	Heat 1.
226 \$E2	HEAT2	0	0	1	0	Heat 2.
227 \$E3	HEAT3	0	0	1	1	Heat 3. Full heating.
229 \$E5	REHEAT LO	0	1	0	1	Supermarket Reheat (lo)
230 \$E6	REHEAT HI	0	1	1	1	Supermarket Reheat (hi)

Table 15. Remote Thermostat Mode

- For all \$Ex values the fan runs if it is already on, otherwise the fan turns on after a fan on-delay. For \$E0 the fan turns off after a fan off-delay.
- COOL2 and COOL3 are equivalent unless 3-stage cooling has been selected locally at the controller during commissioning.
- HEAT2 and HEAT3 are equivalent except in heat pump equipment types, when HEAT2 acts as "emergency heat", running auxiliary strip heat and turning off the compressor(s). So in a heat pump, normal heating is commanded using HEAT1 or HEAT3. REHEAT LO and REHEAT HI can only be used if Supermarket Reheat is enabled for the M3 using Parameter 105.
- If a mode not defined in the above list is sent, then the application mode is not changed.
- When an M3 is commissioned for BACnet[®] gateway remote thermostat operation, it will wait for 5 minutes following start-up to receive application mode data. The M3 will remain in AUTO mode until data is received, or until the 5 minute period has expired.
- If 5 minutes passes without data being received, then the M3 will enter the backup mode of operation (set locally during commissioning).
- It is recommended that the application mode data be updated at intervals of no more than 2 minutes to be sure that a single missed-data event will not constitute an application mode data failure. Any application mode data will serve as a valid update; either common or remote thermostat values.
- If application mode data appears while the M3 is in a backup mode, then the M3 will reset and normal operation will resume.

Object Name:	Outdoor Air Min Pos Control
Object Type:	AO (Analog Output)
Object ID:	102
Object Units:	(98) Percent
Value = 0 - 255	5
0 -100:	Set the minimum position of the outdoor air economizer damper; % open.
101 - 255:	Relinquish to local control. Min damper position depends on the setting in M3 Parameter 132:
	Parameter 132
	=101: Min damper position set by Parameter 132.

The minimum damper position is only effective when the system is occupied and the main blower is running. Otherwise the damper remains closed. Default value following reset is 101 (local).

NOTE: Using AO102 to set the minimum position overrides the Prodigy 2.0 unit controllers ability to offer two minimum positions based on the indoor blower motor speed.

Object Name: Object Type: Object ID: Object Units: Value = 0-255	AO (Analog Output) 103
	space occupied space unoccupied refresh space occupied timer defined at local controller auto; clear timer and return to occupancy scheduler state ollowing reset is 255 (auto). Occupancy" see Appendix C for further details.
Object Type: Object ID: Object Units: Value = 0 - 255 0: 1-255: Default value for Once a value for	
Object Name: Object Type: Object ID: Object Units: Value = 0 - 255	AO (Analog Output) 107 (95) No_Units
	occupancy sensor indicates space occupied occupancy sensor indicates space unoccupied auto; return to occupancy scheduler state illowing reset is 255 (auto). occupancy" see Appendix C for further details.
Object Name: Object Type: Object ID: Object Units: Value = 0 - 100	Space Dehumidification Setpoint AO (Analog Output) 108 (98) Percent

0-100:

% relative humidity setpoint

Dehumidification begins when the effective space relative humidity rises to this setpoint value. The default following reset is local control. Once an executive controller has sent a setpoint for AO:108, there is no way to return to the local setpoint except by controller reset.

Dehumidification ends when the effective space relative humidity falls below this setpoint value minus a dehumidification deadband that is typically 3%. The deadband value is set locally during commissioning.

Object Name:Temperature Setpoint (abs)Object Type:AO (Analog Output)Object ID:109Object Units:(64) Degrees-FahrenheitValue = 36.25 - 100.00°F, in 0.25°F increments

The single-point Temperature Setpoint (abs) (including offset; see below) is converted locally to occupied and unoccupied heating and cooling set points. The occupied and unoccupied heating and cooling set points are computed to be centered (if possible) on the effective single-point setpoint. This is done while preserving the occupied and unoccupied deadbands, as well as any local restrictions on minimum or maximum values. The default following reset is 70°F, but local values are used for the heating and cooling (occupied and unoccupied) set points until a value is received for AO:109.

As an alternative method of establishing set points, the individual set points AV:130-133 may be used. The M3 uses whatever were the last set points received, whether from AO:109-110, or AV:130-133.

The occupied heat/cool auto-changeover deadband value is set locally during commissioning.

The unoccupied heat/cool auto-changeover deadband value is set locally during commissioning by adjusting the backup unoccupied heating and cooling set points. The difference between these set points will be used as the unoccupied heat/ cool auto-changeover deadband value.

Object Name:Temperature Setpoint OffsetObject Type:AO (Analog Output)Object ID:110Object Units:(64) Degrees-FahrenheitValue = -32.00 - 31.75°F, in 0.25°F increments

A signed value added to the Temperature Setpoint (abs) value to provide an effective temperature setpoint. See above regarding dead-bands and limits. The default following reset is 0.

Object Name:	Space Temperature Input
Object Type:	AO (Analog Output)
Object ID:	113
Object Units:	(64) Degrees-Fahrenheit
Value = 36.25 - 100.00	°F, in 0.25°F increments

A network value for the space temperature. Heating and cooling demands are generated based on the Space Temperature Input, and the Temperature Setpoint (abs) and Temperature Setpoint Offset values. See above. The default following reset is 72.5°F.

When an M3 is commissioned for BACnet[®] gateway remote room sensor operation, it will wait for 5 minutes following start-up to receive space temperature data. The M3 will remain in a no-run mode until data is received, or until the 5 minute period has expired.

If 5 minutes passes without data being received, then the M3 begins to use local data for the space temperature. If a local sensor is connected then it will be used. If not, then a failed-sensor error is recorded and the M3 will enter the backup mode of operation (set locally during commissioning).

It is recommended that network data be updated at intervals of no more than 2 minutes to be sure that a single misseddata event will not constitute a data update failure.

If data appears after a sensor failure is processed, it will be treated as an intermittent sensor. Normal operation will resume. If the M3 is in a backup mode, then it will reset before resuming.

Object Name:Emergency Override ControlObject Type:AO (Analog Output)Object ID:114Object Units:(95) No_UnitsValue = 0 - 255255

Set the emergency mode defined by value, decoded as:

		Supply	ExhaustOutdoor	
Value Mode		Fan	Fan	Damper
0 NO	RMAL	auto	auto	auto
1 PR	ESSURIZE	on	off	open
2 DE	PRESSURIZE	off	on (speed)	closed
3 PU	RGE	on	on (speed)	open
4 SH	UTDOWN	off	off	closed
5 FIR	RE			
6 DE	PRESSURIZE	off	on (pressure)	closed
7 PU	RGE	on	on (pressure)	open
>7 NU	IL (normal)	auto	auto	auto
auto -	norma	l operation		
(speed) - exhaust fan runs at speed pre-selected at equipment				
(pressu	(pressure) - exhaust fan runs to maintain building press setpoint; local or remote			ote
Mode 5	Mode 5, FIRE, is a locally defined operation (set at commissioning).			

For units without VFD exhaust fans, modes 6-7 are the same as 2-3.

The default following reset is 0 (NORMAL).

Object Name:	Compressor Enable Control
Object Type:	AO (Analog Output)
Object ID:	115
Object Units:	(98) Percent
Value = 0 - 255	
0:	output disabled
1-100:	output limited to 1 – 100% of maximum
101-255:	maximum output permitted
The following t	able shows the value where the indicat

The following table shows the value where the indicated compressor stage is disabled, for equipment having the indicated maximum number of compressor stages:

Maximum	Stage Disabled When Value < x			
Stages	1	2	3	4
1	Value < 50			
2	Value < 33	Value < 66		
3	Value < 25	Value < 50	Value < 75	
4	Value < 20	Value < 40	Value < 60	Value < 80

Free cooling using an economizer with outdoor air is not considered a stage. Only compressors are considered to be stages. All compressors installed are included, however they are being used; sensible cooling, condenser reheat (latent cooling), or heat pump heating. The default following reset is 100%.

Disabled stages are re-enabled at the above values plus 3% hysteresis.

Ultra-High Efficiency 3 - 6 ton units behave as a single stage unit with respect to AO115. A value less than 50 disables compressor operation. A value greater than or equal to 53 enables compressor operation. Compressor speed is determined locally.

Object Name:Primary Heat Enable ControlObject Type:AO (Analog Output)Object ID:117Object Units:(98) PercentValue = 0 - 255255

0: output disabled

1-100: output limited to 1 – 100% of maximum 101-255: maximum output permitted

The table shown above for Compressor Enable Control can also be applied here to the Primary Heat Enable Control. It shows the value where the indicated primary heating stage is disabled, for equipment having the indicated maximum number of primary heating stages. The default following reset is 100%.

In heat pump systems during heating operation, the lower value of Compressor Enable Control and Primary Heat Enable Control is used to establish the compressors that can run.

Three to six ton units with four-stage gas heat behave as a two-stage unit with respect to AO117.

Object Name:Auxiliary Heat Enable ControlObject Type:AO (Analog Output)Object ID:119Object Units:(98) PercentValue = 0 - 2550: output disabled

1-100:output limited to 1 – 100% of maximum101-255:maximum output permitted

The table shown above for Compressor Enable Control can also be applied here to the "Auxiliary Heat Enable Control". It shows the value where the indicated auxiliary heating stage is disabled, for equipment having the indicated maximum number of auxiliary heating stages. The default following reset is 100%.

The Auxiliary Heat Enable Control is only used in heat pump systems.

Object Name:	Duct Static Setpoint
Object Type:	AO (Analog Output)
Object ID:	123
Object Units:	(58) Inches-of-water
Value = $0.0 - 5.0$ inWC	

The setpoint for control of duct static pressure, in inches of water column. The main blower speed or bypass damper setting is varied to maintain this value. The setpoint can be selected from the range of 0.0 to 5.0 inches of water column. The default following reset is local control. Once an executive controller has sent a setpoint for AO:123, there is no way to return to the local setpoint except by controller reset.

AO123 is supported by:

- Units with CAV (with bypass damper) blower.
- Units with V in the model number for blower type.

Object Name:	Building Static Setpoint
Object Type:	AO (Analog Output)
Object ID:	124
Object Units:	(58) Inches-of-water
Value = -0.5 - 0.5 inWC	

The setpoint for control of building static pressure, in inches of water column. The exhaust blower is cycled or, if a VFD is used, its speed is varied to maintain this value. The setpoint can be selected from the range of -0.5 to +0.5 inches of water column. The default following reset is local control. Once an executive controller has sent a setpoint for AO:124, there is no way to return to the local setpoint except by controller reset.

AO124 is not supported by Prodigy 2.0.

Object Name:Discharge Air Cooling SetpointObject Type:AO (Analog Output)Object ID:125Object Units:(64) Degrees-FahrenheitValue = 40 - 100°F, and -9°F

The setpoint for control of discharge (or supply) air temperature during cooling. When the controller is in the correct mode of operation, sending this setpoint will cause cooling components to cycle, or vary their output, in order to maintain this temperature in the leaving air stream. The setpoint can be selected from the range of 40°F to 100°F. Selecting a value of -9°F causes the control to revert to the use of its locally programmed setpoint. Default value following reset is -9 (local).

AO125 is not applicable to Ultra-High Efficiency 3 - 6 ton units.

Object Name:Discharge Air Heating SetpointObject Type:AO (Analog Output)Object ID:126Object Units:(64) Degrees-FahrenheitValue = 60 - 140°F, and -9°F

The setpoint for control of discharge (or supply) air temperature during heating. When the controller is in the correct mode of operation, sending this setpoint will cause heating components to cycle, or vary their output, in order to maintain this temperature in the leaving air stream. The setpoint can be selected from the range of 60° F to 140° F. Selecting a value of -9° F causes the control to revert to the use of its locally programmed setpoint. Default value following reset is -9 (local).

AO126 is not applicable to Ultra-High Efficiency 3 - 6 ton units.

Object Name:Supply Fan Capacity InputObject Type:AO (Analog Output)Object ID:127Object Units:(98) PercentValue = 33 - 255255

33 - 100: Set the supply fan capacity as a % of maximum speed.
101 - 255: Relinquish to local control. Supply fan capacity depends on M3 parameter values.

Supply fan capacity is only effective when the main blower is running.

Minimum value is limited by parameter 28 (if heating) or parameter 27 (if cooling/ventilation/smoke). AO127 is not recommend for use with the Ultra-High Efficiency 3 - 6 ton units.

Object Name:Exhaust Fan Capacity InputObject Type:AO (Analog Output)Object ID:128Object Units:(98) PercentValue = 33 - 255

33 - 100:Set the exhaust fan capacity as a % of maximum speed.

101 - 255:Relinquish to local control. Exhaust fan capacity depends on M3 parameter values.

Exhaust fan capacity is only effective when the exhaust fan is running. Default value following reset is 255 (local). AO128 is not supported by Prodigy 2.0.

Object Name: Object Type: Object ID: Object Units: Value = 0-255	Set Economizer Outdoor Air Suitable AO (Analog Output) 129 (95) No_Units
0:	Economizer disable
1:	Economizer enable
>1:	Economizer to auto

When outdoor air is determined to be suitable for free cooling, the economizer feature will operate (if installed) on a first stage cooling call to use outdoor air instead of mechanical cooling. AO:129 is used to allow an executive controller to set the state of outdoor air suitability (OAS). It can be enabled, disabled, or left for the local controller to determine.

BACnet control of the economizer requires the M3 is configured for Economizer temperature Mode. Go to SETUP / INSTALL and run the install wizard to verify that Configuration ID 1, position 2 is set to T for Temperature. Default value following reset is 255 (auto).

Object Name:MAC AddressObject Type:AI (Analog Input)Object ID:198Object Units:(95) No_UnitsValue = 0-127

Selectable BACnet MAC address. By default, this value equals the L Connection address.

Object Name:	IMC Address
Object Type:	AI (Analog Input)
Object ID:	199
Object Units:	(95) No_Units
Value = 1-31	

Selectable L Connection address (1-31). This address is used for L Connection network.

Object Name:	IMC Version[04], IMC Version[05], IMC Version[11]
Object Type:	AI (Analog Input)
Object ID:	200, 201,, 207
Object Units:	(95) No_Units
Value = 0, 46, 4	18 - 57
0:	end of string
46:	"."
48:	"0"
 57:	"9"

Each value is the ASCII code of a character in the M3 version number. The version number is found in a null-terminated string, most-significant-character first, beginning in IMC Version[04]. Maximum length is 8 chars, including null.

NOTE: Not recommended for new installations. Read device object property Application_Software_Version instead. For BACnet version read device object property Firmware_Revision.

Object Name: Object Type: Object ID: Object Units:	Unit ID AI (Analog Input) 231 (95) No_Units
Value = 0 - 255	
48-63:	gas heat, electric cool
64-79:	electric heat, electric cool
80-95:	electric heat pump, with or without electric resistive heat

Object Name: Object Type: Object ID: Object Units: Value = 0 - 255	Unit Status AI (Analog Input) 232 (95) No_Units
0 – 1 – 2 – 3 – 5 – 6 – 7 – 8 – 9 – 12 – 14 – 129 – 131 –	HVAC idle. HVAC heat. HVAC morning warmup. HVAC cool. HVAC pre-cool. HVAC off. HVAC test. HVAC test. HVAC emergency heat. HVAC fan only. HVAC max heat. HVAC dehumidification. HVAC fresh air heating. HVAC fresh air cooling.
145 – 161 –	HVAC defrost compressor 1. HVAC defrost compressor 2.
177 – These are the c	HVAC defrost compressor 1 & 2. urrently defined M3 unit status.

Object Name:Space TemperatureObject Type:AI (Analog Input)Object ID:239Object Units:(64) Degrees-FahrenheitValue = 63.75 - 100.00 degF, in 0.25 degF increments

Space temperature from local M3 sensor, or from Space Temperature Input.

This is the actual value being used by the M3. Its source is either a locally wired temperature sensor (see "Local Space Temperature) or the network input (see Space Temperature Input).

Object Name:Discharge Air TemperatureObject Type:AI (Analog Input)Object ID:240Object Units:(64) Degrees-FahrenheitValue = -8.7 - 164.4 degF, in 0.7 degF increments

Discharge air temperature measurement from M3 sensor.

Object Name:	Effective Occupancy
Object Type:	AI (Analog Input)
Object ID:	241
Object Units:	(95) No_Units

Value = 0 - 2

0: space occupied

1: space unoccupied

2: space occupied (timed override)

The occupancy override timer is established locally for each controller during system commissioning.

The Effective Occupancy depends on the Occupancy Scheduler Control, the Occupancy Override Control, and the "Occupancy Sensor Input. For "Effective Occupancy" see Appendix C for further details.

The local M3 occupied input is ignored when a BACnet[®] module is used.

Object Name:Local Outside Air TemperatureObject Type:AI (Analog Input)Object ID:242Object Units:(64) Degrees-FahrenheitValue = -30.6 - 131.6 degF, in 0.6 degF incrementsOutdoor air temperature measurement from M3 sensor.

Object Name:Local Space TemperatureObject Type:AI (Analog Input)Object ID:243Object Units:(64) Degrees-FahrenheitValue = 63.75 - 100.00 degF, in 0.25 degF increments

Space temperature from M3 sensor.

Object Name:Outdoor Air DamperObject Type:AI (Analog Input)Object ID:244Object Units:(98) PercentValue = 0 - 100, 2550 - 100:0 - 100:Outdoor air damper position. Percent-open.255:No damper.

This is a measure of the feedback voltage from the damper motor. The 2-10V feedback signal is converted to 0-100% open damper position provided by AI:244. There is frequently some offset between the indicated damper position given by AI:244 and the physical damper position.

Object Name:	Heat Primary
Object Type:	AI (Analog Input)
Object ID:	245
Object Units:	(98) Percent
Value = 0 – 100	

0 - 100: Current level of the primary heating capacity.

This is based on the number of gas stages operating in a gas/electric unit, or compressors operating in a heat pump, or electric resistance stages operating in an electric/electric unit.

Object Name:	Heat Secondary
Object Type:	AI (Analog Input)
Object ID:	246
Object Units:	(98) Percent
Value = 0 - 100	

0 - 100: Current level of the secondary heating capacity.

This is auxiliary (electric resistance "strip") heat in a heat pump. Whether it is on in addition to the primary heat (compressor), or as emergency heat while the compressor is locked-out.

Object Name:Cool PrimaryObject Type:AI (Analog Input)Object ID:247Object Units:(98) PercentValue = 0 - 100

0 - 100: Current level of the primary cooling capacity. This is based on the number of compressors operating.

There is no secondary cooling.

Object Name: Object Type: Object ID: Object Units: Value = 0 - 1, 2	Economizer Enabled AI (Analog Input) 248 (95) No_Units
0:	Economizer is disabled.
1:	Economizer is enabled (outdoor air is suitable for free cooling).
255:	No economizer.

The enabled state only indicates that the M3 has determined that the outdoor air is suitable for free cooling. The unit is actually executing free cooling operation if "Economizer Enabled" is 1, and "Unit Status" is 3, 5, or 131.

Object Name: Object Type: Object ID:	Supply Fan Status Al (Analog Input) 250
Object Units:	(98) Percent
Value = $0 - 100$	
0:	Supply fan off.
1:	Supply fan on (single-speed fan).
2 - 100:	Supply fan on (variable-speed fan; percent of full speed).

Object Name:	Space Temperature Setpt (Eff)
Object Type:	AI (Analog Input)
Object ID:	252
Object Units:	(64) Degrees-Fahrenheit
Value = 40.0 - 95.0°F, ii	n 0.25°F increments

The effective space temperature setpoint, which depends on:

current "Temperature Setpoint (abs)",

current "Temperature Setpoint Offset",

current "Effective Occupancy",

most recent heating or cooling demand indicated by "Unit Status",

any local setpoint adjustment, and heating and cooling dead-bands and differentials set at system commissioning.

Object Name:	Current Error
Object Type:	AI (Analog Input)
Object ID:	253
Object Units:	(95) No_Units
Value = 0 - 255	

This is the code for the currently occurring alarm condition, if any. If no alarm is currently in progress, then the value is 0. If the value is not zero, then "Current Error" and "Most Recent Error 1" (see below) will be equal. Refer to the M3 User's Guide for alarm code descriptions.

Object Name:Error PointerObject Type:Al (Analog Input)Object ID:254Object Units:(95) No_UnitsValue = 0 - 83

This value points to the next available alarm code location. It runs from 0 to 83, and then rolls-over to 0. Tracking this value and using the ten-most-recent-error-codes (see below) allows an application to determine when new errors are logged by the M3, what those errors are, and if any errors have been missed due to network delays or for any other reason.

To correct for an error in some early versions, if the reported value is in the range of 164-247 then it is necessary to subtract it from 247 in order to get the 0-83 value described above.

Object Name:

Object Type: Object ID: Object Units: Value = 1 - 255 Most recent Error 1, Most recent Error 2 Most recent Error 10 Al (Analog Input) 255, 256, ..., 264 (95) No_Units

These are the ten most recently occurring diagnostic codes; "Most recent Error 1" is the most recent.

This is a first-in first-out buffer. Error codes are stored as they occur, and no filtering is done with respect to duplication or error code severity or priority.

When another error code is logged at "Most recent Error 1", the value in "Most recent Error 10" is lost, being replaced by "Most recent Error 9".

Refer to the M3 User's Guide for alarm code descriptions.

Space CO2 Sensor (Eff) Object Name: Object Type: AI (Analog Input) Object ID: 274 **Object Units:** (96) Parts-per-million Value = 0 - 2000 0 - 6: no sensor 7 - 1992: valid CO₂ measurement 1993 - 2000: sensor error This is the actual value being used by the M3, and is the value measured at the M3.

Object Name: Object Type: Object ID: Object Units: Value = 0 - 200	Space CO2 Sensor (Local) Al (Analog Input) 275 (96) Parts-per-million
0 - 6:	no sensor
7 - 1992:	valid CO ₂ measurement
1993 - 2000:	sensor error
This is the actu	ial value being used by the M3, and is the value measured at the M3.

Object Name:	Space Humidity (Eff)
Object Type:	Al (Analog Input)
Object ID:	276
Object Units:	(98) Percent
Value = 0 - 100	
0:	no sensor
1 - 99:	valid relative humidity measurement
100:	sensor error
This is the actua	al value being used by the M3, and is the value measured at the M3.

Object Name: Space Humidity (Local) Object Type: AI (Analog Input) Object ID: 277 (98) Percent Object Units: Value = 0 - 100 0: no sensor 1 - 99: valid relative humidity measurement 100: sensor error This is the actual value being used by the M3, and is the value measured at the M3.

Object Name:Dehumidification Set Point (Eff)Object Type:Al (Analog Input)Object ID:278Object Units:(98) PercentValue = 0 - 100

Relative humidity setpoint for dehumidification operation.

Deadband is set locally during commissioning.

Object Name:	Dehumidification Status
Object Type:	AI (Analog Input)
Object ID:	279
Object Units:	(95) No_Units
Value = $0 - 2$	

0: No dehumidification installed.

1: Dehumidification installed but not running.

2: Dehumidification installed and running.

Object Name:Return Air TemperatureObject Type:AI (Analog Input)Object ID:281Object Units:(64) Degrees-FahrenheitValue = -8.7 - 164.4°F, in 0.7°F increments

Unit return air temperature measurement from M3 sensor.

Object Name:Building Static PressureObject Type:AI (Analog Input)Object ID:282Object Units:(58) Inches-of-waterValue = -0.500 - 0.500 inWC, in 0.004 inWC increments

Building (space) static pressure measurement from M3 sensor.

Object Name:Duct Static PressureObject Type:AI (Analog Input)Object ID:283Object Units:(58) Inches-of-waterValue = 0.00 - 5.00 inWC, in 0.02 inWC increments

Duct (supply) static pressure measurement from M3 sensor.

Object Name:Exhaust Fan StatusObject Type:Al (Analog Input)Object ID:285Object Units:(98) PercentValue = 0 - 100

0: Exhaust fan off.

1: Exhaust stage 1 on.

2: Exhaust stage 2 on.

33-100: Exhaust variable speed %on.

255: No exhaust.

Object Name:Supply Airflow StatusObject Type:AI (Analog Input)Object ID:286Object Units:(84) Cubic Feet per MinuteValue = 0 - 480 cfm/ton

This object gives the current value of Supply Airflow as calculated by the Prodigy controller if SmartAirflow™ is installed.

Object Name:Blower Motor SpeedObject Type:AI (Analog Input)Object ID:287Object Units:(104) Revolutions per Minute

Percent Value = 0 - 1500 RPM

This object gives the current speed of the Blower Motor if SmartAirflow™ is installed.

Object Name:Blower Motor TorqueObject Type:AI (Analog Input)Object ID:288Object Units:(98) Percent Value = 0, 20 – 1000:Blower is OFF.20:Minimum Blower Torque.

100: Maximum Blower Torque

This object gives the current value of the blower PWM for an ECM type of Blower Motor if SmartAirflow™ is installed.

Object Name:Outdoor AirflowObject Type:AI (Analog Input)Object ID:289Object Units:(84) Cubic Feet per MinuteValue = 0 - 480 cfm/ton

The amount of outdoor airflow that is entering through the outdoor damper as calculated by Prodigy controller if SmartAirflow™ is installed.

Object Name:Baud Rate SettingObject Type:AV (Analog Value)Object ID:1Object Units:(95) No UnitsValue = 9600, 19200, 38400, 76800

Baud rate change only takes affect after M3 resets. Default value following reset is 38400, but this can be changed at the unit. See M3 manual for details.

Object Name:	Heating Occupied Setpoint
Object Type:	AV (Analog Value)
Object ID:	130
Object Units:	(64) Degrees-Fahrenheit
Value = 40 - 95	

Occupied heating setpoint. Default value following reset is local (P 137).

As an alternative method of establishing setpoints, the single setpoint AO:109 and offset AO:110 may be used. The M3 uses whatever were the last set points received, whether from AO:109-110, or AV:130-133.

To be considered in range the values for AV:130, 131, 132, and 133 must be in the range 40-95, and the heating setpoint must be less than the corresponding (occupied or unoccupied) cooling setpoint by at least the auto-changeover deadband value set in M3 Parameter 152 (default 3°F, 2-10°F range). If any of these condition is are violated, BACnet will return an out of range message. The AVs 130-133 can be used instead of the single setpoint and offset AO:109 and AO:110.

Object Name:	Cooling Occupied Setpoint
Object Type:	AV (Analog Value)
Object ID:	131
Object Units:	(64) Degrees-Fahrenheit
Value = 40 - 95	

Occupied cooling setpoint. Default value following reset is local (Parameter 139). See description for AV:130 for details on valid range.

Object Name:	Heating Unoccupied Setpoint
Object Type:	AV (Analog Value)
Object ID:	132
Object Units:	(64) Degrees-Fahrenheit
Value = 40 - 95	

Unoccupied heating setpoint. Default value following reset is local (Parameter 138). See description for AV:130 for details on valid range.

Object Name: Object Type: Object ID: Object Units: Value = 40 - 95

Cooling Unoccupied Setpoint AV (Analog Value) 133 (64) Degrees-Fahrenheit

Unoccupied cooling setpoint. Default value following reset is local (Parameter 140). See description for AV:130 for details on valid range.

Object Name:Supply Airflow Low Speed TargetObject Type:AV (Analog Value)Object ID:134Object Units:(84)Cubic Feet per Minute

This object will set the default of Supply airflow Low Speed Target (parameter 17) following a reset. This is applicable only for systems with SmartAirflow[™] installed. See appendix B for the details on valid ranges.

Object Name:Supply Airflow High Speed TargetObject Type:AV (Analog Value)Object ID:135Object Units:(84)Cubic Feet per Minute

This object will set the default of Supply airflow High speed target (parameter 14) following a reset. This is applicable only for systems with SmartAirflow[™] installed. See appendix B for the details on valid ranges.

Object Name:Supply Airflow Medium Low Speed TargetObject Type:AV (Analog Value)Object ID:136Object Units:(84)Cubic Feet per MinuteThis chiest will get the default of Supply airflow Medium Low Speed Target (parameter 16) for

This object will set the default of Supply airflow Medium Low Speed Target (parameter 16) following a reset.

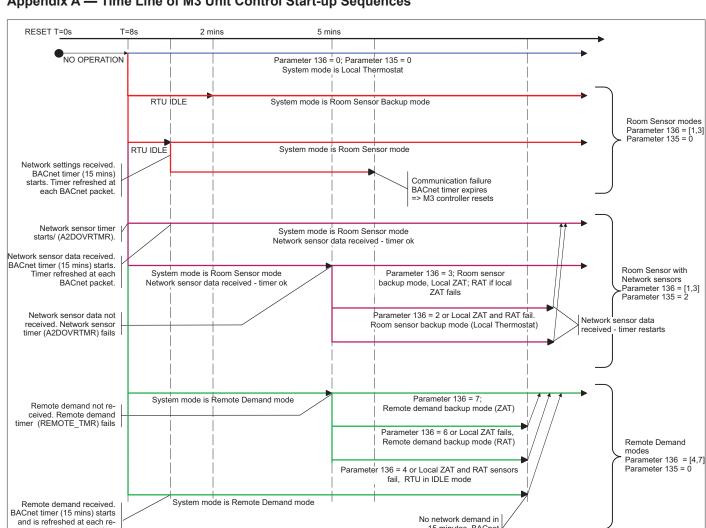
Object Name:Supply Airflow Medium High Speed TargetObject Type:AV (Analog Value)Object ID:137Object Units:(84)Cubic Feet per MinuteThis object will set the default of Supply airflow Medium High Speed Target (parameter 15) following a reset.

Object Name:Supply Airflow Heat Mode TargetObject Type:AV (Analog Value)Object ID:138Object Units:(84)Cubic Feet per Minute

This object will set the default of Supply airflow Heat Mode target (parameter 13) following a reset. This is applicable only for systems with SmartAirflow[™] installed. See appendix B for the details on valid ranges.

Object Name:Ventilation Airflow TargetObject Type:AV (Analog Value)Object ID:139Object Units:(84)Cubic Feet per Minute

This object will set the default of Ventilation Airflow Target (parameter 18) following a reset. This is applicable only for systems with SmartAirflow[™] installed. See appendix B for the details on valid ranges.


Object Name:Smoke Airflow TargetObject Type:AV (Analog Value)Object ID:140Object Units:(84)Cubic Feet per Minute

This object will set the default of Smoke Airflow target (parameter 12) following a reset. This is applicable only for systems with SmartAirflow[™] installed. See appendix B for the details on valid ranges.

Object Name:Outdoor Airflow TargetObject Type:AV (Analog Value)Object ID:141Object Units:(84)Cubic Feet per Minute

This object will set the default of Smoke Airflow target (parameter 237) following a reset. This is applicable only for systems with SmartAirflow[™] installed. See appendix B for the details on valid ranges.

No network demand in 15 minutes. BACnet

communication failure.

Appendix A — Time Line of M3 Unit Control Start-up Sequences

mote demand packet.

Appendix B — Supply Airflow Targets

The measure and minimature values of Cur	pply Airflow Targets in CFM units are as below.
The maximum and minimum values of Sur	NOV AIMOW TAMAIS IN CENTINUS ARE AS DEIOW

UNIT SIZE	36	48	60
Maximum High Speed Target & Heat Mode Target (480 CFM/ton)	1440	1920	2400
Minimum High Speed Target (280 CFM/ton)	840	1120	1400
Minimum Low Speed Target (220 CFM/ton)	660	880	1100
Minimum Ventilation Target (150 CFM/ton)	450	600	750
Minimum Heat Mode Target Standard Gas Heat (S,W)	970	970	970
Minimum Heat Mode Target Medium Gas Heat (M, Q, U, Y)	1120	1120	1120
Minimum Heat Mode Target High Gas Heat Minimum (H, T, X, Z)	1310	1310	1310
Minimum Heat Mode Target Electric Heat	1080	1280	1600
Maximum Outdoor Airflow (150 cfm/ton)	450	600	750

Note:

1. Maximum Ventilation Target should be less than High Speed Target or Heat Mode Target

2. Maximum Low Speed Target should be less than High Speed Target

Appendix C — Blower Operations and Effective Occupancy

This section describes how BACnet[®] occupancy signals are combined to produce effective occupancy.

The blower runs to service heat and cool demands, regardless of the space occupancy. However when there is no heating or cooling demand there are options for how the blower should operate in conjunction with occupancy signals to keep the space ventilated, or the air stirred.

 California Energy Commission Title 24 - The legacy option settings for OCC Blower Mode are AUTO CYCLES or ON-CONTINUOUS 1. These settings govern whether the blower runs continuously when the space is considered occupied, or cycles on/off with the heating and cooling demand. To comply with the California Energy Commission Title 24 standard there are two additional values for OCC Blower Mode which are ON-CONTINUOUS 2 and ON-CONTINUOUS 3.

OCC Blower Mode	Description
AUTO CYCLES	Blower cycles on/off with demand. (Legacy usage.)
ON- CONTINUOUS 1	Blower runs when either the occupancy sensor or schedule, or both, indicates occupied. (Legacy usage.)
ON- CONTINUOUS 2	Blower runs when both the occupancy sensor and schedule indicate occupied.
ON- CONTINUOUS 3	The same as option 2, but blower runs for 30 minutes and is off for 90 minutes when schedule is occupied but the occupancy sensor is not occupied.

- LonTalk, BACnet and L Connection: These two new options are available when using these networks types that supplies a room occupancy signal (in addition to the scheduled occupancy).
- **NOTE:** For **L Connection** the same two options are also available when using an optional room occupancy sensor. If a room occupancy sensor is not physically installed and configured for the network, then the only options available for **OCC Blower Mode** are **AUTO CYCLES** or **ON-CONTINUOUS 1**.
 - **RTU Standalone**: Since a room occupancy sensor cannot be used in this configuration, then the only options for **OCC Blower Mode** are **AUTO CYCLES** or **ON-CONTINUOUS 1**.
- Enabling BACnet To enable the BACnet module, go to SETUP > INSTALL and run the setup wizard. When Configuration ID 1 appears on the screen, configure position 5 as B. This will enable the BACnet[®] module
- 3. Menu Setup Procedure Method for OCC Blower Mode

These blower control options are handled by the OCC Blower Mode. These setting can be changed using the following menu path: Go to SETUP > NETWORK INTEGRATION > NETWORK = BACNET > BACNET MAC ADDRESS > BACNET BAUD RATE > CONTROL MODE = ROOM SENSOR >(additional prompts concerning network configuration and sensor types will be asked) CONTROL MODE = ROOM SENSOR > ROOM SENSOR OCC BLOWER MODE = (see table 14)

Table 17. BACnet Occupancy Points

Mode	BACnet	Value
Manual	Occupancy Override Control AO 103	0: space occupied
		1: space unoccupied
		2: refresh space occupied override timer
		3255: auto; clear timer and return to scheduler
	Occupancy Scheduler Control AO 104	0: space occupied
Schedule		1255: space unoccupied
Sensor		0: space occupied
	Occupancy Sensor Input	1: space unoccupied
	AO 107	2255: auto; return to occupancy scheduler state
Effective Occupancy	Effective Occupancy Al 241	0: space occupied
		1: space unoccupied
		2: space occupied (timed override)

Table 16. Blower Operation Description

Blower Operation	Description
On	Blower runs continuously.
Cycles	Blower cycles on/off with demand.
Cycles w/Stir	Blower cycles on/off with demand; during off cycle blower is on 30 minutes of 120.

Table 17. Blower Operation Schedule

Manual	Schedule	Sensor	Effective Occupancy	OCC BLOWER MODE	Blower Operation	
			0	AUTO-CYCLES	Cycles	
0, 2	n/a	n/a		ON-CONTINOUS 1	On	
0, 2	11/a	ື	OCCUPIED	ON-CONTINOUS 2	On	
			0	ON-CONTINOUS 3	On	
			UN	AUTO-CYCLES	Cycles	
1	n/a	n/a	UNOCCUPIED	ON-CONTINOUS 1	Cycles	
	II/a	a	UPII	ON-CONTINOUS 2	Cycles	
			Ü	ON-CONTINOUS 3	Cycles	
			OCCUPIED 0, 2-225	AUTO-CYCLES	Cycles	
3255	0	0, 2		ON-CONTINOUS 1	On	
3200	3255 0 2-225 0 PE	0	ў 22	JPIE	ON-CONTINOUS 2	On
			0	ON-CONTINOUS 3	On	
			0	AUTO-CYCLES	Cycles	
3255	0		ON-CONTINOUS 1	On		
3200	3255 0 -		ON-CONTINOUS 2	Cycles		
			ON-CONTINOUS 3	Cycles w/Stir		
		n/a	UN	AUTO-CYCLES	Cycles	
3255	1255		VOCC	ON-CONTINOUS 1	Cycles	
3200	1200		/a	UNOCCUPIED	ON-CONTINOUS 2	Cycles
		ED		ON-CONTINOUS 3	Cycles	

Appendix D — BACnet® Protocol Implementation Conformance (PIC) Statement

Date	July 11, 2011
Vendor Name	Lennox Industries, Inc.
Product Name	Prodigy Rooftop Unit Controller
Product Model Number	M3
Firmware Revision	1.00h
Application Software Version	on 8.03.xx
BACnet Protocol Revision	7

Product Description

HVAC controller designed to control Lennox commercial rooftop units.

BACnet® Standardized Device Profile (Annex L)

	BACnet Operator Workstation (B-OWS)
	BACnet Building Controller (B-BC)
	BACnet Advanced Application Controller (B-AAC)
х	BACnet Application Specific Controller (B-ASC)
	BACnet Smart Sensor (B-SS)
	BACnet Smart Actuator (B-SA)

BACnet® Interoperability Building Blocks (BIBBs) Supported (Annex K)

Data Sharing:DS-RP-B(ReadProperty),DS-RPM-B(ReadPropertyMultiple),DS-WP-B(WriteProperty)Device Management:DM-DDB-B(Dynamic Device Binding),DM-DOB-B(Dynamic Object Binding),DM-DCC-B(DeviceCommunicationControl),DM-RD-B(ReinitializeDevice)

Which of the following device binding methods does the product support? (check one or more)

Send Who-Is, receive I-Am (BIBB DM-DDB-A)

x Receive Who-Is, send I-Am (BIBB DM-DDB-B)

Send Who-Has, receive I-Have (BIBB DM-DOB-A)

x Receive Who-Has, send I-Have (BIBB DM-DOB-B)

Manual configuration of recipient deviceÕs network number and MAC address

None of the above

Standard Object Types Supported

xDevice ObjectxAnalog InputxAnalog OutputxAnalog ValueBinary InputBinary OutputBinary ValueFileMulti-State InputMulti-State Output

Data Link Layer Options

	BACnet [®] IP, (Annex J)
	BACnet IP, (Annex J), Foreign Device
	ISO 8802-3, Ethernet (Clause 7)
	ANSI/ATA 878.1, 2.5 Mb. ARCNET (Clause 8)
	ANSI/ATA 878.1, RS-485 ARCNET (Clause 8), baud rate(s)
х	MS/TP main (Clause 9), baud rate(s): 9.6K, 19.2K, 38.4K, 76.8K MS/
	TP sub (Clause 9), baud rate(s):
	Point-To-Point, EIA 232 (Clause 10), baud rate(s):
	Point-To-Point, modem, (Clause 10), baud rate(s):
	LonTalk, (Clause 11), medium:
	Other:

Dynamically Creatable Objects:NoneDynamically Deletable Objects:NoneProprietary Properties:NoneNetworking Options:NoneSegmentation Capability:NoneCharacter Sets Supported:Vertice

х	ANSI X3.4
	IBM [™] /Microsoft [™] DBCS
	ISO 8859-1
	ISO 10646 (UCS-2)
	ISO 10646 (UCS-4)
	JIS C 6226