UNIT INFORMATION

100072

Service Literature

KHC180 and 240

KHC180 and 240 packaged heat pump units are available in 178,000 to 220,000 Btuh heating outputs and 15 or 20ton cooling capacities. Units utilize two compressors, two reversing valves and other parts common to a heat pump.

Optional electric heat is field-installed. Electric heat operates in single or multiple stages depending on the kW input size. 15kW to 60kW heat sections are available for 180 units and 15kW to 90kW heat sections are available for 240 units.

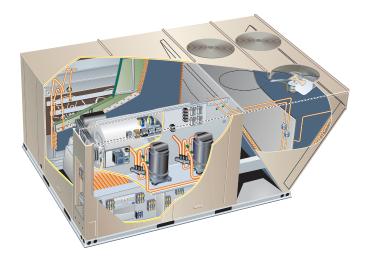
Units equipped with supply air inverter (VFD) are available. The blower will operate at lower speeds when cooling demand is low and increase to higher speeds when cooling demand is high. Refer to Supply Air Inverter Start-Up section.

Units are designed to accept any of several different energy management thermostat control systems with minimum field wiring.

Information contained in this manual is intended for use by qualified service technicians only. All specifications are subject to change. Procedures outlined in this manual are presented as a recommendation only and do not supersede or replace local or state codes.

If the unit must be lifted for service, rig unit by attaching four cables to the holes located in the unit base rail (two holes at each corner). Refer to the installation instructions for the proper rigging technique.

WARNING


Electric shock hazard. Can cause injury or death. Before attempting to perform any service or maintenance, turn the electrical power to unit OFF at disconnect switch(es). Unit may have multiple power supplies.

As with any mechanical equipment, contact with sharp sheet metal edges can result in personal injury. Take care while handling this equipment and wear gloves and protective clothing.

The Clean Air Act of 1990 bans the intentional venting of refrigerant (CFC's and HCFC's) as of July 1, 1992. Approved methods of recovery, recycling or reclaiming must be followed. Fines and/or incarceration may be levied for non-compliance.

KHC SERIES

15 / 20 ton

A WARNING

To prevent serious injury or death:

- 1- Lock-out/tag-out before performing maintenance.
- 2- If system power is required (e.g., smoke detector maintenance), disable power to blower, remove fan belt where applicable, and ensure all controllers and thermostats are set to the "OFF" position before performing maintenance.
- 3- Always keep hands, hair, clothing, jewelry, tools, etc., away from moving parts.

Table of Contents

Options	Page 2
Specifications	Page 5
Blower Data	Page 6
Electrical / Electric Heat Data .	Page 9
I Unit Components	Page 13
II Placement and Installation	Page 25
III Start Up Operation	Page 25
IV Charging	Page 25
V System Service Checks	Page 27
VI Maintenance	Page 27
VII Accessories	Page 28
VIII Diagrams	Page 45

Item Description		Catalog	180	240
		Number		
COOLING SYSTEM Condensate Drain Trap	PVC	22H54	Х	Х
	Copper	76W27	× ×	X
Drain Pan Overflow Switch		10C24	X	X
Low Ambient Kit		55W73	Х	Х
Refrigerant Type		R-410A	0	0
BLOWER - SUPPLY AIR		I		
Blower Options	MSAV Multi-Stage Air Volume	Factory	0	0
Motors - MSAV [®] Multi-Stage Air Volume	Belt Drive - 3 hp	Factory	0	
	Belt Drive - 5 hp	Factory	0	0
	Belt Drive - 7.5 hp	Factory	0	0
	Belt Drive - 10 hp	Factory		0
VFD Manual Bypass Kit (for MSAV [®] equipped units)	3 hp, 5 hp (208/230V) 3 hp, 5 hp, 7.5 hp, 10 hp (460V and 575V)	90W52	Х	Х
	7.5 hp, 10 hp (208/230V)	90W51	Х	Х
Drive Kits	Kit #1 535-725 rpm	Factory	0	
See Blower Data Tables for usage and selection	Kit #2 710-965 rpm	Factory	0	
Selection	Kit #3 685-856 rpm	Factory	0	0
	Kit #4 850-1045 rpm	Factory	0	0
	Kit #5 945-1185 rpm	Factory	0	0
	Kit #6 850-1045 rpm	Factory	0	0
	Kit #7 945-1185 rpm	Factory	0	0
	Kit #8 1045-1285 rpm	Factory	0	0
	Kit #10 1045-1285 rpm	Factory		0
	Kit #11 1135-1365 rpm	Factory		0
CABINET				
Combination Coil/Hail Guards		23U71	OX	OX
Hinged Access Panels		Factory	0	0
CONTROLS				
NOTE - Also see Conventional Thermostat	Control Systems for Additional Options.			
Smoke Detector - Supply or Return (Power bo	ard and one sensor)	22H56	Х	Х
Smoke Detector - Supply and Return (Power b	poard and two sensors)	22H57	Х	Х

NOTE - Catalog numbers shown are for ordering field installed accessories.

OX - Configure To Order (Factory Installed) or Field Installed

O = Configure To Order (Factory Installed)

X = Field Installed

Item Description		Catalog Number	180	240
NDOOR AIR QUALITY				
Air Filters				
Healthy Climate [®] High Efficiency Air Filters	MERV 8	54W67	Х	Х
24 x 24 x 2 (Order 6 per unit)	MERV 13	52W40	Х	Х
	MERV 16	21U42	Х	Х
Replacement Media Filter With Metal Mesh Frame (includes non-pleated filter med	ia)	44N61	Х	Х
Indoor Air Quality (CO ₂) Sensors				
Sensor - Wall-mount, off-white plastic cover with LCD display		77N39	Х	Х
Sensor - Wall-mount, off-white plastic cover, no display		23V86	Х	Х
Sensor - Black plastic case with LCD display, rated for plenum mounting		87N52	Х	Х
Sensor - Wall-mount, black plastic case, no display, rated for plenum mounting		87N54	Х	Х
CO₂ Sensor Duct Mounting Kit - for downflow applications		85L43	Х	Х
Aspiration Box - for duct mounting non-plenum rated CO ₂ sensors (77N39)		90N43	Х	Х
Needlepoint Bipolar Ionization (NPBI)				
Needlepoint Bipolar Ionization Kits		21U37	Х	
		21U38		Х
UVC Germicidal Light Kit				
¹ Healthy Climate [®] UVC Light Kit (110/230v-1ph)		21A94	Х	Х
Step-Down Transformers 460V primary, 23	0V secondary	10H20	Х	Х
575V primary, 23	0V secondary	10H21	Х	Х
ELECTRICAL				
Voltage 60 Hz 208/2	30V - 3 phase	Factory	0	0
	60V - 3 phase	Factory	0	0
	75V - 3 phase	Factory	0	0
Disconnect Switch	80 amp	54W85	OX	OX
see Electric Heat Tables for usage)	150 amp	54W86	OX	OX
č ,	250 amp	54W87	OX	OX
GFI Service Outlets 15 amp non-powered, field-wired (208/230	1	74M70	OX	OX
² 20 amp non-powered, field-wired (208/230)	• ,	67E01	X	X
² 20 amp non-powered, field	,	Factory	0	0
Neatherproof Cover for GFI		10C89	X	<u> </u>
•			Λ	~
	000/000\/ 0	001100	V	v
15 kW	208/230V-3ph	22H66	X	X
	460V-3ph	22H67	X	X
	575V-3ph	22V35	X	X
30 kW	208/230V-3ph	22H70	X	X
	460V-3ph	22H71	X	X
	575V-3ph	22V37	X	<u>X</u>
15 kW	208/230V-3ph	22H74	X	X
	460V-3ph	22H75	X	X
	575V-3ph	22V39	X	<u>X</u>
60 kW	208/230V-3ph	22H78	X	X
	460V-3ph	22H79	Х	Х
	575V-3ph	22V41	Х	Х
90 kW	208/230V-3ph	22H80		Х
	460V-3ph	22H81		Х
	575V-3ph	22V42		Х

¹ Lamps operate on 110-230V single-phase power supply. Step-down transformer may be ordered separately for 460V and 575V units. Alternately, 110V power supply may be used to directly power the UVC ballast(s).

² Canada requires a minimum 20 amp circuit. Select 20 amp, non-powered, field wired GFI.

NOTE - Catalog numbers shown are for ordering field installed accessories.

OX - Configure To Order (Factory Installed) or Field Installed

O = Configure To Order (Factory Installed)

X = Field Installed

Item Description	Catal Numl	- 180	240
ECONOMIZER			
Standard Economizer With Outdoor Air Hood (Not for Title 24)			
Standard Economizer Downflow or Horizontal Applications - Includes Outdoor Air Hood, order Downflow or Horiz Barometric Relief Dampers separately	13U4 ontal	48 X	Х
Standard Economizer Controls (Not for Title 24)			
Single Enthalpy Control	21Z	09 X	Х
Differential Enthalpy Control (order 2)	21Z	09 X	Х
High Performance Economizer With Outdoor Air Hood (Approved for California Title 24 Building Standards / AMCA Class 1A Certified)			
High Performance Economizer Downflow or Horizontal Applications - Includes Outdoor Air Hood, order Downflow or Horiz Barometric Relief Dampers separately	23G ontal	24 OX	OX
High Performance Economizer Controls			
Single Enthalpy Control	23G		Х
Differential Enthalpy Control (order 1 for factory. order 2 for field) (Not for Title 24)	23G	26 X	Х
Economizer Accessories			
WLAN Stick (For High Performance Economizer only)	23K	58 X	Х
Barometric Relief Dampers With Exhaust Hood			
Downflow Barometric Relief Dampers	54W		OX
Horizontal Barometric Relief Dampers	16K	99 X	Х
OUTDOOR AIR			
Outdoor Air Dampers With Outdoor Air Hood			
Motorized	22J2		Х
Manual	13U	05 X	Х
1 POWER EXHAUST (DOWNFLOW APPLICATIONS ONLY)			
Standard Static, SCCR Rated 208	8/230V 22H 9	90 X	Х
	460V 22H	91 X	Х
	575V 22V	34 X	Х
			~
ROOF CURBS			^
ROOF CURBS Hybrid Roof Curbs, Downflow		I	
	11F	58 X	X
Hybrid Roof Curbs, Downflow	11F 11F		
Hybrid Roof Curbs, Downflow 8 in. height		59 X	X
Hybrid Roof Curbs, Downflow 8 in. height 14 in. height 18 in. height 24 in. height	11F	59 X 60 X	X X
Hybrid Roof Curbs, Downflow 8 in. height 14 in. height 18 in. height	11F(11F(59 X 60 X	X X X X
Hybrid Roof Curbs, Downflow 8 in. height 14 in. height 18 in. height 24 in. height Adjustable Pitch Curb 14 in. height	11F(11F(59 X 60 X 61 X	X X X
Hybrid Roof Curbs, Downflow 8 in. height 14 in. height 18 in. height 24 in. height Adjustable Pitch Curb 14 in. height Standard Roof Curbs, Horizontal - Requires Horizontal Return Air Panel Kit	11F5 11F0 11F0 43W	S9 X 60 X 61 X 26 X	X X X X X
Hybrid Roof Curbs, Downflow 8 in. height 14 in. height 18 in. height 24 in. height Adjustable Pitch Curb 14 in. height Standard Roof Curbs, Horizontal - Requires Horizontal Return Air Panel Kit 26 in. height - slab applications	11Ft 11Ft 11Ft 43W	S9 X 60 X 61 X 26 X 39 X	X X X X X X
Hybrid Roof Curbs, Downflow 8 in. height 14 in. height 18 in. height 24 in. height Adjustable Pitch Curb 14 in. height Standard Roof Curbs, Horizontal - Requires Horizontal Return Air Panel Kit 26 in. height - slab applications 37 in. height - rooftop applications	11F5 11F0 11F0 43W	S9 X 60 X 61 X 26 X 39 X	X X X X X
Hybrid Roof Curbs, Downflow 8 in. height 14 in. height 18 in. height 24 in. height 24 in. height Adjustable Pitch Curb 14 in. height Standard Roof Curbs, Horizontal - Requires Horizontal Return Air Panel Kit 26 in. height - slab applications 37 in. height - rooftop applications Insulation Kit For Standard Horizontal Curbs	11F5 11F6 11F6 43W 11T5 11T5	S9 X 60 X 61 X 26 X 39 X 26 X	X X X X X X
Hybrid Roof Curbs, Downflow 8 in. height 14 in. height 18 in. height 24 in. height Adjustable Pitch Curb 14 in. height Standard Roof Curbs, Horizontal - Requires Horizontal Return Air Panel Kit 26 in. height - slab applications 37 in. height - rooftop applications Insulation Kit For Standard Horizontal Curbs For 26 in. Curb	11F3 11F0 11F0 43W 11T3 11T3 73K3	59 X 60 X 61 X 26 X 39 X 96 X 32 X	X X X X X X X X X
Hybrid Roof Curbs, Downflow 8 in. height 14 in. height 18 in. height 24 in. height Adjustable Pitch Curb 14 in. height Standard Roof Curbs, Horizontal - Requires Horizontal Return Air Panel Kit 26 in. height - slab applications 37 in. height - rooftop applications Insulation Kit For Standard Horizontal Curbs For 26 in. Curb For 37 in. Curb	11F5 11F6 11F6 43W 11T5 11T5	59 X 60 X 61 X 26 X 39 X 96 X 32 X	X X X X X X
Hybrid Roof Curbs, Downflow 8 in. height 14 in. height 18 in. height 24 in. height Adjustable Pitch Curb 14 in. height Standard Roof Curbs, Horizontal - Requires Horizontal Return Air Panel Kit 26 in. height - slab applications 37 in. height - rooftop applications Insulation Kit For Standard Horizontal Curbs For 26 in. Curb For 37 in. Curb Horizontal Return Air Panel Kit	11F4 11F6 11F6 43W 11T8 11T8 73K3 73K3	59 X 60 X 61 X 26 X 39 X 96 X 32 X 34 X	X X X X X X X X X X X X
Hybrid Roof Curbs, Downflow 8 in. height 14 in. height 18 in. height 24 in. height Adjustable Pitch Curb 14 in. height Standard Roof Curbs, Horizontal - Requires Horizontal Return Air Panel Kit 26 in. height - slab applications 37 in. height - rooftop applications Insulation Kit For Standard Horizontal Curbs For 26 in. Curb For 37 in. Curb	11F3 11F0 11F0 43W 11T3 11T3 73K3	59 X 60 X 61 X 26 X 39 X 96 X 32 X 34 X	X X X X X X X X X
Hybrid Roof Curbs, Downflow 8 in. height 14 in. height 18 in. height 24 in. height Adjustable Pitch Curb 14 in. height Standard Roof Curbs, Horizontal - Requires Horizontal Return Air Panel Kit 26 in. height - slab applications 37 in. height - rooftop applications Insulation Kit For Standard Horizontal Curbs For 26 in. Curb For 37 in. Curb Horizontal Return Air Panel Kit	11F4 11F6 11F6 43W 11T8 11T8 73K3 73K3	59 X 60 X 61 X 26 X 39 X 96 X 32 X 34 X	X X X X X X X X X X X X
Hybrid Roof Curbs, Downflow 8 in. height 14 in. height 18 in. height 24 in. height Adjustable Pitch Curb 14 in. height Standard Roof Curbs, Horizontal - Requires Horizontal Return Air Panel Kit 26 in. height - slab applications 37 in. height - rooftop applications Insulation Kit For Standard Horizontal Curbs For 26 in. Curb For 37 in. Curb Horizontal Return Air Panel Kit Required for Horizontal Applications with Roof Curb	11F4 11F6 11F6 43W 11T8 11T8 73K3 73K3 73K3 87M	59 X 60 X 61 X 26 X 39 X 36 X 32 X 34 X 00 X	X X X X X X X X X X X X
Hybrid Roof Curbs, Downflow8 in. height14 in. height14 in. height24 in. heightAdjustable Pitch Curb14 in. heightStandard Roof Curbs, Horizontal - Requires Horizontal Return Air Panel Kit26 in. height - slab applications37 in. height - rooftop applications37 in. height - rooftop applicationsFor 26 in. CurbFor 37 in. CurbHorizontal Return Air Panel KitRequired for Horizontal Applications with Roof CurbCEILLING DIFFUSERS	11F3 11F6 11F6 43W 43W 11T3 11T3 73K3 73K3 73K3 73K3 73K3 73K3 73K3 73	59 X 50 X 51 X 26 X 39 X 96 X 32 X 34 X 00 X 63 X	X X X X X X X X X X X X
Hybrid Roof Curbs, Downflow 8 in. height 14 in. height 18 in. height 24 in. height 24 in. height Adjustable Pitch Curb 14 in. height Standard Roof Curbs, Horizontal - Requires Horizontal Return Air Panel Kit 26 in. height - slab applications 37 in. height - rooftop applications Insulation Kit For Standard Horizontal Curbs For 26 in. Curb For 37 in. Curb Horizontal Return Air Panel Kit Required for Horizontal Applications with Roof Curb CEILING DIFFUSERS Step-Down - Order one RTD11 RTD11	11F4 11F6 11F6 43W 43W 11T8 11T8 73K3 73K3 73K3 73K3 73K3 73K3 73K3 73K	59 X 50 X 51 X 26 X 39 X 39 X 32 X 34 X 00 X 63 X 64 X	X X X X X X X X X X X X
Hybrid Roof Curbs, Downflow 8 in. height 14 in. height 18 in. height 24 in. height Adjustable Pitch Curb 14 in. height Standard Roof Curbs, Horizontal - Requires Horizontal Return Air Panel Kit 26 in. height - slab applications 37 in. height - rooftop applications Insulation Kit For Standard Horizontal Curbs For 26 in. Curb For 37 in. Curb Horizontal Return Air Panel Kit Required for Horizontal Applications with Roof Curb CEILING DIFFUSERS Step-Down - Order one RTD11 Flush - Order one FD11 FD11 FD11	11F3 11F6 11F6 11F6 43W 11T8 11T8 73K3 73K3 73K3 73K3 73K3 73K3 73K3 73K	59 X 50 X 51 X 26 X 39 X 39 X 32 X 34 X 00 X 63 X 64 58	X X X X X X X X X X X
8 in. height 14 in. height 13 in. height 24 in. height Adjustable Pitch Curb 14 in. height Standard Roof Curbs, Horizontal - Requires Horizontal Return Air Panel Kit 26 in. height - slab applications 37 in. height - rooftop applications 1nsulation Kit For Standard Horizontal Curbs For 26 in. Curb For 37 in. Curb Horizontal Return Air Panel Kit Required for Horizontal Applications with Roof Curb CEILING DIFFUSERS Step-Down - Order one RTD11 Flush - Order one FD11	11F3 11F6 11F6 11F6 43W 43W 11T8 11T8 73K3 73K3 73K3 73K3 73K3 73K3 73K3 73K	59 X 50 X 51 X 26 X 39 X 36 X 32 X 34 X 00 X 63 X 64 58 59 59	X X X X X X X X X X X X

NOTE - Catalog numbers shown are for ordering field installed accessories.

OX - Configure To Order (Factory Installed) or Field Installed

O = Configure To Order (Factory Installed) X = Field Installed

SPECIFICA	TIONS		
General Data	Nominal Tonnage	15 Ton	20 Ton
	Model Number	KHC180S4M	KHC240S4M
	Efficiency Type	Standard	Standard
	Blower Type	MSAV® Multi-Stage Air Volume	MSAV® Multi-Stage Air Volume
Cooling	Gross Cooling Capacity - Btuh	181,000	230,000
Performance	¹ Net Cooling Capacity - Btuh	176,000	222,000
	¹ AHRI Rated Air Flow - cfm	5500	7000
	Total Unit Power - kW	16.6	20.9
	¹ EER (Btuh/Watt)	10.6	10.6
	¹ IEER (Btuh/Watt)	13.5	13.5
	Refrigerant Type	R-410A	R-410A
	Refrigerant Charge Circuit 1	22 lbs. 12 oz.	22 lbs. 8 oz.
	Furnished Circuit 2	21 lbs. 12 oz.	21 lbs. 8 oz.
Heating	¹ Total High Heat Capacity - Btuh	166,000	218,000
Performance	Total Unit Power - kW	14.7	19.3
	¹ C.O.P.	3.30	3.30
	¹ Total Low Heat Capacity - Btuh	92,000	116,000
	Total Unit Power (kW)	13.1	16.5
	¹ C.O.P.	2.05	2.05
Electric Heat Av		15-30-45-60 KW	15-30-45-60-90 KW
Compressor Ty	ype (number)	(2) Single-Stage Scroll	(2) Single-Stage Scroll
Outdoor Coils	Net face area (total) - sq. ft.	55.1	55.1
	Tube diameter - in.	3/8	3/8
	No. of rows	2	2
	Fins per inch	20	20
Outdoor Coil	No. and type	(4) PSC	(4) PSC
Fans	Motor - (No.) horsepower	(4) 1/3	(4) 1/3
ans	Motor rpm	1075	1075
	Total Motor watts	1750	1750
	Diameter - (No.) in.	(4) 24	(4) 24
	Number of blades	3	3
	Total Air volume - cfm	12,500	12,500
ndoor Coils	Net face area (total) - sq. ft.	21.4	21.4
	Tube diameter - in.	3/8	3/8
	Number of rows	4	4
	Fins per inch	14	14
	Drain connection - No. and size	(1) 1 in. FPT	(1) 1in. FPT
	Expansion device type	Balance port TXV,	
Indoor	Nominal motor output	3 hp, 5 hp, 7.5 hp	5 hp, 7.5 hp, 10 hp
Blower	Maximum usable motor output	3.45 hp, 5.75 hp,	5.75 hp, 8.63 hp,
and	(US Only)	8.63 hp	11.5 hp
Drive	Motor - Drive kit number	3 hp	5 hp
Selection		Kit 1 535-725 rpm	Kit 3 685-856 rpm
Delection		Kit 2 710-965 rpm	Kit 4 850-1045 rpm
		5 hp	Kit 5 945-1185 rpm
		Kit 3 685-856 rpm	7.5 hp
		•	Kit 6 850-1045 rpm
		Kit 4 850-1045 rpm	•
		Kit 5 945-1185 rpm 7.5 hp	Kit 7 945-1185 rpm Kit 8 1045-1285 rpm
		Kit 6 850-1045 rpm	10 hp
		Kit 7 945-1185 rpm	Kit 7 945-1185 rpm
			•
		Kit 8 1045-1285 rpm	Kit 10 1045-1285 rpm
Blower	heel nominal diameter x width - in.	(2) 15 × 15	Kit 11 1135-1365 rpm
Filters	Type of filter	(2) 15 x 15	(2) 15 x 15
IIIGIS		MERV 4, D	
loctrical ober	Number and size - in.	(6) 24 x 208/230\/ 460\/ or 575	
Electrical char		208/230V, 460V or 575	

NOTE - Gross cooling capacity includes evaporator blower motor heat deduction. Net cooling capacity does not include evaporator blower motor heat deduction. ¹ AHRI Certified to AHRI Standard 340/360:

Cooling Ratings - 95°F outdoor air temperature and 80°F db/67°F wb entering indoor coil air.

High Temperature Heating Ratings - 47°F db/43°F wb outdoor air temperature and 70°F entering indoor coil air.

Low Temperature Heating Ratings - 17°F db/15°F wb outdoor air temperature and 70°F entering indoor coil air.

² Using total air volume and system static pressure requirements determine from blower performance tables rpm and motor output required. Maximum usable output of motors furnished are shown. In Canada, nominal motor output is also maximum usable motor output. If motors of comparable output are used, be sure to keep within the service factor limitations outlined on the motor nameplate.

NOTE – Motor service factor limit - 1.0.

BLOWER DATA

BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL & AIR FILTERS IN PLACE

FOR ALL UNITS ADD:

Wet indoor coil air resistance of selected unit.
 Any factory installed options air resistance (electric heat, economizer, etc.)
 Any field installed accessories air resistance (electric heat, duct resistance, diffuser, etc.)

Then determine from blower table blower motor output and drive required.

See page 7 for wet coil and option/accessory air resistance data. See page 7 for factory installed drive kit specifications.

										101	AL STA	TIC PRI	ESSUR)TAL STATIC PRESSURE - Inches Water Gauge (Pa)	es Wat	er Gau	ge (Pa)									
Air Volume	0.2	20	0.4	40	o	.60	ō	80		1.00	1.20	20	-	1.40	1.	1.60	-	1.80	2.(2.00	2.:	2.20	6	2.40	5	60
5	RPM	внр	RPM	ВНР	RPM	I BHP	RPM	BHP	RPM	BHP	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	внр	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР
3250	405	0.40	520	0.60	615	0	695	1.10	765	1.30	830	1.60	890	1.85	950	2.10		:	:		:	:	:			
3500	415	0.45	530	0.70	620	0.95	700	1.20	775	1.45	840	1.70	006	2.00	955	2.25	1005	2.55					:			ł
3750	425	0.50	540	0.75	630	1.05	710	1.30	780	1.60	845	1.85	905	2.15	960	2.45	1010	2.70	1060	3.00	1110	3.30			1	
4000	435	0.55	545	0.85	635	1.10	715	1.40	785	1.70	850	2.00	910	2.30	965	2.60	1020	2.90	1070	3.25	1115	3.55	1160	3.85	1205	4.15
4250	445	0.60	555	0.90	645	1.25	725	1.55	795	1.85	855	2.15	915	2.45	970	2.80	1025	3.10	1075	3.45	1120	3.75	1165	4.10	1210	4.45
4500	455	0.70	565	1.00	655			1.65	800	2.00	865	2.35	925	2.65	980	3.00	1030	3.30	1080	3.65	1130	4.05	1175	4.35	1215	4.70
4750	470	0.75	575	1.10	660	1.45		1.80	810	2.15	870	2.50	930	2.85	985	3.20	1040	3.55	1085	3.90	1135	4.25	1180	4.65	1225	5.00
2000 ag	480	0.85	585	1.25	670	1.60	750	1.95	815	2.30	880	2.70	940	3.05	995	3.40	1045	3.80	1095	4.15	1140	4.50	1185	4.90	1230	5.30
	495	0.95	595	1.35	680		755	2.10	825	2.50	890	2.90	945	3.25	1000	3.65	1050	4.00	1100	4.40	1150	4.80	1195	5.20	1235	5.60
, 5500	505	1.05	605	1.45	690	1.85	765	2.25	835	9	895	3.05	955	3.45	1010	3.85	1060	4.25	1110	4.70	1155	5.10	1200	5.50	1240	5.90
5750	520	1.15	615	1.60	700		775	2.45	840	2.85	905	3.25	960	3.65	1015	4.10	1065	4.50	1115	4.95	1160	5.35	1205	5.80	1250	6.25
6000	530	1.30	630	1.75	710	2.15	785	2.60	850	3.05	910	3.45	970	3.90	1025	4.35	1075	4.80	1120	5.20	1170	5.65	1215	6.10	1255	6.55
6250	545	1.40	640	1.90	720	2.35		2.80	860	2	920	3.70	975	4.15	1030	4.60	1080	5.05	1130	5.50	1175	5.95	1220	6.45	1265	6.90
6500	560	1.55	650	2.05	730			3.00	870	3.45	930	3.95	985	4.40	1040	4.85	1090	5.35	1140	5.85	1185	6.30	1225	6.75	1270	7.25
6750	570	1.70	665	2.20	745	2.70		3.20	880	3.70	940	4.20	995	4.65	1045	5.10	1095	5.60	1145	6.10	1190	6.60	1235	7.10	1275	7.60
7000	585	1.85	675	2.35	755		825	3.40	890	3.95	950	4.45	1005	4.95	1055	5.40	1105	5.95	1155	6.45	1200	6.95	1240	7.45	1285	8.00
7250	600	2.00	690	2.60	765	3.10		3.65	006	4.15	955	4.65	1015	5.25	1065	5.75	1115	6.25	1160	6.75	1205	7.30	1250	7.85	1290	8.35
7500	615	2.20	700	2.75	775		845	3.85	910	4.45	965	4.95	1020	5.50	1075	6.05	1125	6.60	1170	7.15	1215	7.65	1260	8.25	1300	8.75
7750	630	2.40	715	3.00	790	3.55		4.10	920	4.70	975	5.25	1030	5.80	1080	6.35	1130	6.90	1180	7.50	1225	8.05	1265	8.60	1305	9.15
8000	640	2.55	725	3.20	800		865	4.35	930	4.95	985	5.50	1040	6.10	1090	6.70	1140	7.25	1185	7.85	1230	8.40	1275	9.00	1315	9.60
8250	655	2.80	740	3.40	810		880	4.65	940	5.25	995	5.85	1050	6.45	1100	7.05	1150	7.65	1195	8.25	1240	8.85	1280	9.40	1325	10.05
8500	670	3.00	750	3.65	825	4.30	890	4.90	950	5.55	1005	6.15	1060	6.80	1110	7.40	1160	8.05	1205	8.65	1250	9.25	1290	9.85	1330	10.45
8750	685	3.25	765	3.90	835	4.55	006	5.20	960	5.85	1015	6.45	1070	7.15	1120	7.75	1165	8.35	1215	9.05	1255	9.65	1300	10.30	1340	10.90
0006	700	3.50	780	4.20	850	4.85	910	5.50	970	6.15	1025	6.80	1080	7.50	1130	8.15	1175	8.75	1220	9.40	1265	10.10	1310	10.80	1350	11.40
9250	715	3.75	790	4.45	860		925	5.85	985	6.55	1040	7.20	1090	7.85	1140	8.55	1185	9.20	1230	9.85	1275	10.55	1315	11.20		
9500	730	4.00	805	4.75	875	5.45	935	6.15	995	6.90	1050	7.60	1100	8.25	1150	8.95	1195	9.60	1240	10.30	1285	11.05				
9750	745	4.30	820	5.05	885		950	6.55	1005	7.20	1060	7.95	1110	8.65	1160	9.40	1205	10.05	1250	10.80	1295	11.50				
10,000	760	4.60	835	5.40	006		960	6.85	1015	7.60	1070	8.35	1120	9.05	1170	9.80	1215	10.50	1260	11.25						: :
10,250	775	4.90	845	5.65	910	6.45	970	7.20	1030	8.00	1080	8.75	1135	9.55	1180	10.25	1225	11.00	:	1	1	1	1			
10,500	790	5.20	860	6.00	925		985	7.65	1040	8.40	1095	9.20	1145	10.00	1190	10.70	1235	11.45	:	- - -	- - -					
10,750	805	5.55	875	6.40	940	7.25	1000	8.05	1055	8.85	1105	9.65	1155	10.45	1200	11.20	1		;	1	1		1			
11 000	000	00 2	008	e a	020		1010	8 1 E	1065		1115	10.01	1101	10.00												

BLOWER DATA

FACTORY INSTALLED BELT DRIVE KIT SPECIFICATIONS

Nominal hp	Maximum hp	Drive Kit Number	RPM Range
3	3.45	1	535 - 725
3	3.45	2	710 - 965
5	5.75	3	685 - 856
5	5.75	4	850 - 1045
5	5.75	5	945 - 1185
7.5	8.63	6	850 - 1045
7.5	8.63	7	945 - 1185
7.5	8.63	8	1045 - 1285
10	11.50	7	945 - 1185
10	11.50	10	1045 - 1285
10	11.50	11	1135 - 1365

NOTE - Using total air volume and system static pressure requirements determine from blower performance tables rpm and motor output required. Maximum usable output of motors furnished are shown. In Canada, nominal motor output is also maximum usable motor output. If motors of comparable output are used, be sure to keep within the service factor limitations outlined on the motor nameplate.

NOTE - Motor service factor limit - 1.0.

FACTORY INSTALLED OPTIONS/FIELD INSTALLED ACCESSORY AIR RESISTANCE - in. w.g.

Air Volume	Wat Indoor Call		Economizer		Filters		Herizontal Doof Curk
cfm	Wet Indoor Coil	Electric Heat	Economizer	MERV 8	MERV 13	MERV 16	Horizontal Roof Curt
3250	0.03			0.01	0.04	0.07	0.04
3500	0.03			0.01	0.04	0.08	0.05
3750	0.03			0.01	0.04	0.08	0.05
4000	0.04			0.01	0.04	0.09	0.06
4250	0.04			0.01	0.05	0.10	0.07
4500	0.05			0.01	0.05	0.10	0.07
4750	0.05			0.02	0.05	0.11	0.08
5000	0.05			0.02	0.06	0.12	0.08
5250	0.06			0.02	0.06	0.12	0.09
5500	0.07			0.02	0.06	0.13	0.10
5750	0.07			0.02	0.07	0.14	0.11
6000	0.08	0.01		0.03	0.07	0.14	0.11
6250	0.08	0.01	0.01	0.03	0.07	0.15	0.12
6500	0.09	0.01	0.02	0.03	0.08	0.16	0.13
6750	0.10	0.01	0.03	0.03	0.08	0.17	0.14
7000	0.10	0.01	0.04	0.04	0.08	0.17	0.15
7250	0.11	0.01	0.05	0.04	0.09	0.18	0.16
7500	0.12	0.01	0.06	0.04	0.09	0.19	0.17
8000	0.13	0.02	0.09	0.05	0.10	0.21	0.19
8500	0.15	0.02	0.11	0.05	0.10	0.22	0.21
9000	0.16	0.04	0.14	0.06	0.11	0.24	0.24
9500	0.18	0.05	0.16	0.07	0.12	0.25	0.26
10,000	0.20	0.06	0.19	0.07	0.12	0.27	0.29
10,500	0.22	0.09	0.22	0.08	0.13	0.29	0.31
11,000	0.24	0.11	0.25	0.09	0.14	0.30	0.34

MINIMUM AIR VOLUME REQUIRED FOR USE WITH OPTIONAL ELECTRIC HEAT

Electric Heat kW	Minimum cfm
15	6000
30	6000
45	6000
60	6000
90	6000
	1

POWER EXHAUST FAN PERFORMANCE

Return Air System Static Pressure	Air Volume Exhausted
in. w.g.	cfm
0.00	8630
0.05	8210
0.10	7725
0.15	7110
0.20	6470
0.25	5790
0.30	5060
0.35	4300
0.40	3510
0.45	2690
0.50	1840

CEILING DIFFUSER AIR RESISTANCE - in. w.g.

A !			Step-Dow	n Diffuser			Flush E	Diffuser
Air Volume		RTD11-185S			RTD11-275			
cfm	2 Ends Open	1 Side/2 Ends Open	All Ends & Sides Open	2 Ends Open	1 Side/2 Ends Open	All Ends & Sides Open	FD11-185S	FD11-275
5000	.51	.44	.39				.27	
5200	.56	.48	.42				.30	
5400	.61	.52	.45				.33	
5600	.66	.56	.48				.36	
5800	.71	.59	.51				.39	
6000	.76	.63	.55	.36	.31	.27	.42	.29
6200	.80	.68	.59				.46	
6400	.86	.72	.63				.50	
6500				.42	.36	.31		.34
6600	.92	.77	.67				.54	
6800	.99	.83	.72				.58	
7000	1.03	.87	.76	.49	.41	.36	.62	.40
7200	1.09	.92	.80				.66	
7400	1.15	.97	.84				.70	
7500				.51	.46	.41		.45
7600	1.20	1.02	.88				.74	
8000				.59	.49	.43		.50
8500				.69	.58	.50		.57
9000				.79	.67	.58		.66
9500				.89	.75	.65		.74
10,000				1.00	.84	.73		.81
10,500				1.10	.92	.80		.89
11,000				1.21	1.01	.88		.96

CEILING DIFFUSER AIR THROW DATA

Madal		¹ Effective Thr	ow Range - ft.	Madal		¹ Effective Thr	ow Range - ft.
Model No.	Air Volume cfm	RTD11-185S Step-Down	FD11-185S Flush	Model No.	cfm	RTD11-275 Step-Down	FD11-275 Flush
	5600	39 - 49	28 - 37		7200	RTD11-275	26 - 35
	5800	42 - 51	29 - 38		7400	35 - 40	28 - 37
180	6000	44 - 54	40 - 50		7600	36 - 41	29 - 38
100	6200	45 - 55	42 - 51		7800	38 - 43	40 - 50
	6400	46 - 55	43 - 52	240	8000	39 - 44	42 - 51
	6600	47 - 56	45 - 56		8200	Step-Down 33 - 38 35 - 40 36 - 41 38 - 43 39 - 44 41 - 46 43 - 49 44 - 50	43 - 52
			on leaving the outlet		8400	RTD11-275 Step-Down 7200 33 - 38 7400 35 - 40 7600 36 - 41 7800 38 - 43 8000 39 - 44 8200 41 - 46 8400 43 - 49 8600 44 - 50	44 - 54
or diffuser before the open.	e maximum velocity is	reduced to 50 ft. per r			8600	44 - 50	46 - 57
			Page 8)	8800	RTD11-275 Step-Down 33 - 38 35 - 40 36 - 41 38 - 43 39 - 44 41 - 46 43 - 49 44 - 50	48 - 59

ELECTRICAL/ELECTRIC HEAT DATA

	Μ	KHC180S4M												
¹ Voltage - 60H		2	08/230	V - 3 P	h		46	0V - 3	Ph	575V - 3 Ph				
Compressor 1	Rated Lo	ad Amps		25					12.8				9.6	
(Non-Inverter)	Locked Ro	Locked Rotor Amps		164					100			78		
Compressor 2	Rated Lo	ad Amps			2	5				12.2		9		
(Non-Inverter)	Locked Ro	tor Amps			16	64				100			78	
Outdoor Fan	Full Load Amps (4 N	on-ECM)			2	.4				1.3			1	
Motors (4)		Total			9	.6				5.2			4	
Power Exhaust	Full Lo	ad Amps			2	.4				1.3			1	
(2) 0.33 HP		Total			4	.8				2.6			2	
Service Outlet 1	I15V GFI (amps)				1	5				15			20	
Indoor Blower	Но	rsepower		3	Į	5	7	.5	3	5	7.5	3	5	7.5
Motor	Full Lo	ad Amps	10).6	16	6.7	24	.2	4.8	7.6	11	3.9	6.1	9
² Maximum		Unit Only	10	00	1(00	1	10	50	50	50	35	40	40
Overcurrent Protection (MOCP)		With (2) 0.33 HP Power Exhaust		00	1'	10	1'	10	50	50	50	40	40	45
³ Minimum	Unit Onl		7	7	8	3	9	1	39	41	45	29	32	34
Circuit Ampacity	With (2)	With (2) 0.33 HP Power Exhaust		32		8	-	5	41	44	48	31	34	36
(MCA)														
Electric Heat V			208V	240V	208V	240V	208V	240V	480V	480V	480V	600V	600V	600V
² Maximum	Unit+	15 kW	125	125	125	150	150	150	70	70	70	50	50	60
Overcurrent	Electric Heat	30 kW	175	175	175	175	175	200	90	90	90	70	70	80
Protection	-	45 kW	200	225	200	225	225	250	110	110	125	90	90	90
(MOCP)	-	60 kW	225	225	225	250	225	250	125	125	125	90	90	100
³ Minimum	Unit+	15 kW	116	122	122	128	130	136	61	64	67	47	50	53
Circuit	Electric Heat	30 kW	155	167	161	173	169	181	84	87	90	65	68	71
Ampacity	-	45 kW	194	212	200	218	208	226	106	109	113	84	86	89
(MCA)	-	60 kW	202	221	208	227	216	235	111	114	117	87	89	92
² Maximum	Unit+	15 kW	125	150	150	150	150	150	70	70	70	50	60	60
Overcurrent	Electric Heat	30 kW	175	175	175	200	175	200	90	90	100	70	70	80
Protection (MOCP)	and (2) 0.33 HP - Power Exhaust _	45 kW	200	225	225	225	225	250	110	125	125	90	90	100
		60 kW	225	250	225	250	225	250	125	125	125	90	100	100
³ Minimum	Unit+	15 kW	121	127	127	133	134	140	64	67	70	49	52	55
Circuit	Electric Heat	30 kW	160	172	166	178	174	186	86	89	93	67	70	73
Ampacity (MCA)	and (2) 0.33 HP [–] Power Exhaust –	45 kW	199	217	205	223	213	231	109	112	115	86	88	91
· - /	FUWEI EXHAUSL -	60 kW	207	226	213	232	220	240	113	116	120	89	91	94

NOTE - All units have a minimum Short Circuit Current Rating (SCCR) of 5000 amps.

¹ Extremes of operating range are plus and minus 10% of line voltage.

² HACR type breaker or fuse.

³ Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

⁴ Disconnect must be field furnished.

ELECTRICAL/ELECTRIC HEAT DATA

	M	odel No.						KHC24	40S4M					
¹ Voltage - 60H	Z		2	08/230	V - 3 P	h		46	0V - 3	Ph	57	′5V - 3	Ph	
Compressor 1	Rated Lo	ad Amps			31	1.1				13			11	
(Non-Inverter)	Locked Ro	tor Amps	255					123			93.7			
Compressor 2	Rated Lo	Rated Load Amps		31.1					13			11		
(Non-Inverter)	Locked Ro	tor Amps			25	55				123			93.7	
Outdoor Fan	Full Load Amps (4 N	on-ECM)			2	.4				1.3			1	
Motors (4)	-	Total			9	.6				5.2			4	
Power Exhaust	Full Lo	ad Amps			2	.4				1.3			1	
(2) 0.33 HP		Total			4	.8				2.6			2	
Service Outlet 1	15V GFI (amps)				1	5				15	-		20	
Indoor Blower	Но	rsepower	ļ	5	7	.5	1	0	5	7.5	10	5	7.5	10
Motor	Full Lo	ad Amps	16	6.7	24	1.2	30).8	7.6	11	14	6.1	9	11
² Maximum		Unit Only	12	25	12	25	12	25	50	50	60	45	45	50
Overcurrent Protection		0.33 HP	12	25	12	25	12	25	50	60	60	45	50	50
(MOCP)	Power	Exhaust												
³ Minimum		Unit Only	9)7	1(04	1	11	43	46	49	35	38	40
Circuit		0.33 HP	1(02	1(09	1	16	45	49	52	37	40	42
Ampacity (MCA)		Exhaust												
ELECTRIC HE	ΔΤ ΠΔΤΔ													1
Electric Heat V			208V	240V	208V	240V	208V	240V	480V	480V	480V	600V	600V	600V
² Maximum	Unit+	15 kW	150	150	150	150	150	175	70	70	80	60	60	60
Overcurrent	Electric Heat	30 kW	175	200	200	200	200	225	90	100	100	80	80	80
Protection	-	45 kW	225	250	225	250	250	250	110	125	125	90	100	100
(MOCP)	-	60 kW	250	250	250	250	250	300	125	125	125	100	100	100
	-	90 kW	300	350	300	350	300	350	175	175	175	125	125	150
³ Minimum	Unit+	15 kW	136	142	143	149	150	156	65	69	72	53	56	58
Circuit	Electric Heat	30 kW	175	187	182	194	189	201	88	91	94	71	74	76
Ampacity (MCA)	-	45 kW	214	232	222	240	228	246	110	114	117	89	92	94
	-	60 kW	222	241	229	249	236	255	115	118	121	93	96	98
	-	90 kW	284	313	292	321	299	327	151	154	157	122	125	127
² Maximum	Unit+	15 kW	150	150	150	175	175	175	70	80	80	60	60	60
Overcurrent	Electric Heat	30 kW	200	200	200	200	200	225	90	100	100	80	80	80
Protection (MOCP)	and (2) 0.33 HP - Power Exhaust _	45 kW	225	250	250	250	250	300	125	125	125	100	100	100
(60 kW	250	250	250	300	250	300	125	125	125	100	100	110
		90 kW	300	350	300	350	350	350	175	175	175	125	150	150
³ Minimum	Unit+	15 kW	141	147	148	154	155	161	68	71	74	55	58	60
Circuit	Electric Heat	30 kW	180	192	187	199	194	206	90	94	97	73	76	78
Ampacity (MCA)	and (2) 0.33 HP - Power Exhaust _	45 kW	219	237	226	244	233	251	113	116	119	91	94	96
		60 kW	227	246	234	253	241	260	117	121	124	95	98	100
	-	90 kW	289	318	297	326	303	332	153	157	160	124	127	129

NOTE - All units have a minimum Short Circuit Current Rating (SCCR) of 5000 amps.

¹ Extremes of operating range are plus and minus 10% of line voltage.

² HACR type breaker or fuse.

³ Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

⁴ Disconnect must be field furnished.

ELEC	LECTRIC HEAT CAPACITIES														
Volts	15 kW 30 kW			45 kW			60 kW			90 kW					
Input	kW Input	Btuh Output	No. of Stages	kW Input	Btuh Output	No. of Stages	kW Input	Btuh Output	No. of Stages	kW Input	Btuh Output	No. of Stages	kW Input	Btuh Output	No. of Stages
208	11.3	38,600	1	22.5	76,800	1	33.8	115,300	2	45.0	153,600	2	67.6	230,700	2
220	12.6	43,000	1	25.2	86,000	1	37.8	129,000	2	50.4	172,000	2	75.6	258,000	2
230	13.8	47,100	1	27.5	93,900	1	41.3	141,000	2	55.1	188,000	2	82.7	282,200	2
240	15.0	51,200	1	30.0	102,400	1	45.0	153,600	2	60.0	204,800	2	90.0	307,100	2
440	12.6	43,000	1	25.2	86,000	1	37.8	129,000	2	50.4	172,000	2	75.6	258,000	2
460	13.8	47,100	1	27.5	93,900	1	41.3	141,000	2	55.1	188,000	2	82.7	282,200	2
480	15.0	51,200	1	30.0	102,400	1	45.0	153,600	2	60.0	204,800	2	90.0	307,100	2
550	12.6	43,000	1	25.2	86,000	1	37.8	129,000	2	50.4	172,000	2	75.6	258,000	2
575	13.8	47,100	1	27.5	93,900	1	41.3	141,000	2	55.1	188,000	2	82.7	282,200	2
600	15.0	51,200	1	30.0	102,400	1	45.0	153,600	2	60.0	204,800	2	90.0	307,100	2

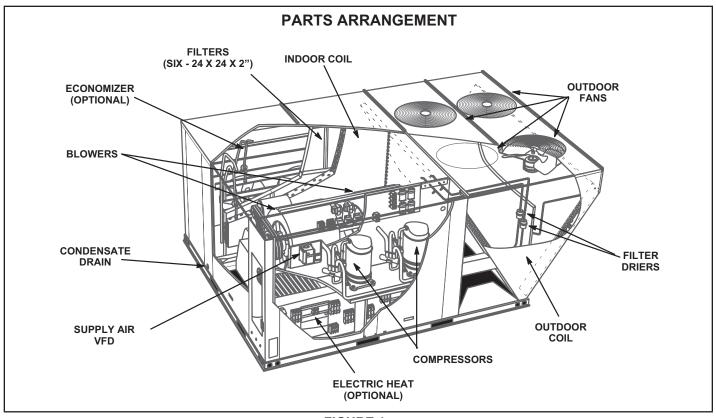


FIGURE 1

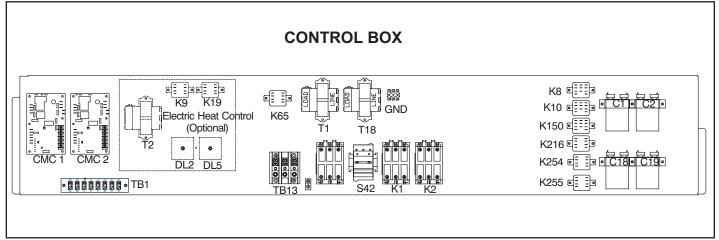


FIGURE 2

I-UNIT COMPONENTS

Unit components are shown in figure 1. All units come standard with removeable unit panels. All L1, L2 and L3 wiring is color coded; L1 is red, L2 is yellow and L3 is blue.

A-Control Box Components

KCC control box components are shown in FIGURE 2. The control box is located in the compressor compartment.

1-Disconnect Switch S48 (field or factory installed)

All units may be equipped with an optional disconnect switch S48. S48 can be a toggle switch or a twist style switch. Both types can be used by the service technician to disconnect power to the unit. Units without S48 will be equipped with terminal strip TB2.

2-Terminal Strip TB2

Units without S48 will have supply power connected to TB2.

3-Fuse F4

Fuse F4 is used only with single point power supply. F4 gives over amperage protection to the compressor and other cooling components. F4, S48 and TB2 are located inside a sheet metal enclosure in the unit left front corner mullion.

4-Terminal Strip TB13

All units are equipped with TB13. TB13 is located on the control panel in the compressor compartment.

5-Control Transformer T1

All use a single line voltage to 24VAC transformer mounted in the control box. Transformer supplies power to control circuits in the unit. The transformer is rated at 70VA and is protected by a 3.5 amp circuit breaker (CB8) which is located on the transformer itself. The 208/230 (Y) voltage transformers have two primary voltage taps, but only one may be used depending on supply voltage. See FIG-URE 3.

460 (G) and 575 (J) voltage transformers use a single primary voltage tap.

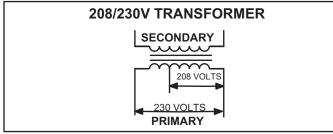


FIGURE 3

6-Control Transformer T18

T18 is a single line voltage to 24VAC transformer. Transformer T18 is protected by a 3.5 amp circuit breaker (CB18) located on the transformer itself. T18 is identical to transformer T1. The transformer supplies 24VAC power to the CMC1, CMC2 and reversing valves L1 and L2.

7- Terminal Strip TB1

All indoor thermostat connections will be to TB1 located on the control panel. For thermostats with "occupied " and "unoccupied" modes, a factory-installed jumper across terminals R and OC should be removed. Unit wiring is designed for a two-stage thermostat. See TABLE 1.

TABLE 1 TB1 TERMINAL DESIGNATIONS

Y1	Cool Stage 1
Y2	Cool Stage 2
W1	Heat Stage 1
W2	Heat Stage 2
OC	Occupied
G	Indoor Blower
R	24V To Thermostat
С	Ground

8-Outdoor Fan Capacitors C1, C2, C18 & C19

Fan capacitors C1, C2, C18, C19 are 10 MFD / 370V capacitors used to assist in the start up of condenser fans B4, B5, B21, B22 respectively.

9-Outdoor Fan Relay K10, K150, K254, K255

Outdoor fan relays are DPDT relays with a 24VAC coil. K10, K150, K254 and K255 energizes B4, B5, B21 and B22 respectively.

10-Compressor Contactor K1 & K2 (all units)

All compressor contactors are three-pole-double-break contactors with 24VAC coils. K1 and K2 energize compressors B1 and B2 respectively, in response to thermostat demand.

11-Blower Contactor K3

Blower contactor K3 is used in all units with the VFD bypass option. The contactor is three-pole-double-break with a 24VAC coil used to energize the indoor blower motor B3, in response to blower demand. K3 is energized from terminal G on TB1.

12-Blower Motor Overload Relay S42

S42 is a manual reset overload relay, used in all units with a 10 HP blower motor and VFD by-pass. The relay is connected in line with the blower motor to monitor the current flow to the motor. When the relay senses an overload condition, a set of normally closed contacts opens de-energizing the 24 volt output of T1. See FIGURE 4.

13-Power Exhaust Relay K65 (PED units)

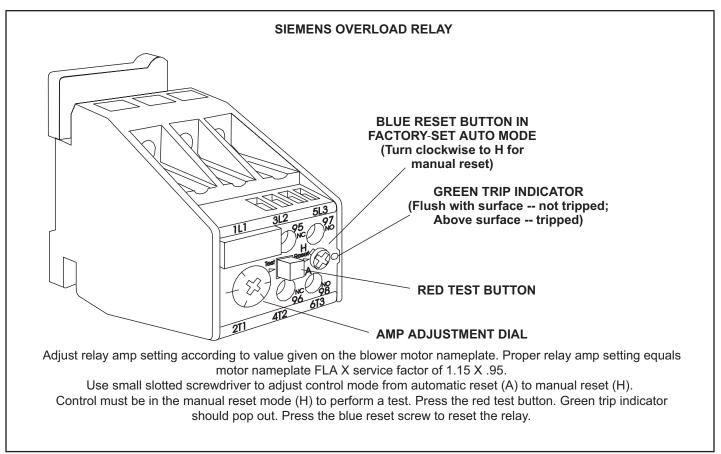
Power exhaust relay K65 is a DPDT relay with a 24VAC coil. K65 is used in units equipped with field-installed, optional power exhaust dampers. K65 is energized by the economizer enthalpy control A6, after the economizer dampers reach 50% open (adjustable) When K65 closes, exhaust fans B10 and B11 are energized.

14-Variable Frequency Drive A96

MSAV[®] units are equipped with a VFD which alters the supply power frequency and voltage to the blower motor. Blower speed is staged depending on the compressor stages, heating demand, or ventilation demand. The amount of airflow for each stage is preset from the factory. Full speed airflow can be adjusted by changing the variable sheave on the blower motor. Part load cooling speed is $\frac{2}{3}$ of full speed. The VFD is located below the upper control panel.

15-Inverter Default Relay K232

The relay is used in MSAV units and is a two-pole, doublethrow relay with a 24VAC coil. K232 is energized through the A96 VFD B-C normally closed contact.


If the VFD fails, the B-C contact will open and de-energize the K232 coil and cut the 24VAC power to the thermostat and the whole unit. K232 is located beside A96

16-Phase Monitor A42

Phase monitor detects the phasing of incoming power. If the incoming power is out of phase or if any of the three phases are lost, an indicator LED on the phase monitor will turn red and the unit will not start. In normal operation with correct incoming power phasing, the LED will be green. A42 is located beside A96.

17-VFD Control Board A183

VFD control board A183 is a solid-state control board powered with 24VDC from the variable frequency drive A96. A183 gets signals from the thermostat, ignition control and economizer modules to determine blower speeds and damper minimum positions. For more information on the A183, refer to the MSAV Start Up section. A183 is located on the left side of the control area.

FIGURE 4

18-Defrost Control Boards CMC1 & CMC2

The defrost thermostat, defrost pressure switch and the defrost control work together to ensure that the heat pump outdoor coil does not ice excessively during the heating mode.

Compressor Accumulated Run-Time Interval

The defrost control will not energize a defrost cycle unless

the unit has been operating in heating mode for an accumulated 60 minutes (default). The run time interval can be changed by moving the jumper on the CMC board timing

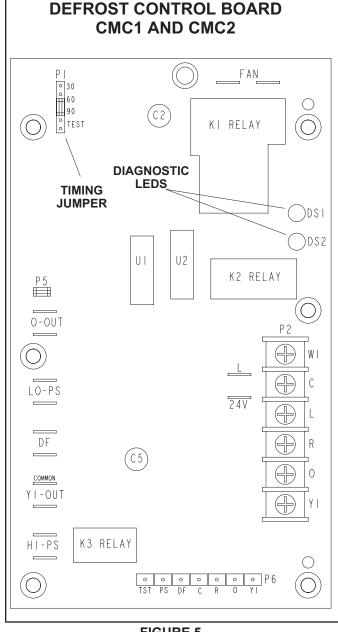
pins. See FIGURE 5.

The defrost interval can be adjusted to 30, 60, or 90 minutes. The defrost timing jumper is factory-installed to provide a 60-minute defrost interval. If the timing selector jumper is not in place, the control defaults to a 90-minute defrost interval.

NOTE - When adjusting timing pins, set both CMC1 and CMC2 defrost controls to the same defrost interval.

Defrost Test Option

A TEST option is provided for troubleshooting. The TEST mode may be started any time the unit is in the heating mode and the defrost thermostat is closed or jumpered.


If the timing jumper is in the TEST position at power-up, the defrost control will ignore the test pins. When the jumper is placed across the TEST pins for two seconds, the control will enter the defrost mode. If the jumper is removed before an additional 5-second period has elapsed (7 seconds total), the unit will remain in defrost mode until the defrost pressure switch opens or 14 minutes have passed. If the jumper is not removed until after the additional 5-second period has elapsed, the defrost will terminate and the test option will not function again until the jumper is removed and re-applied.

Diagnostic LEDs

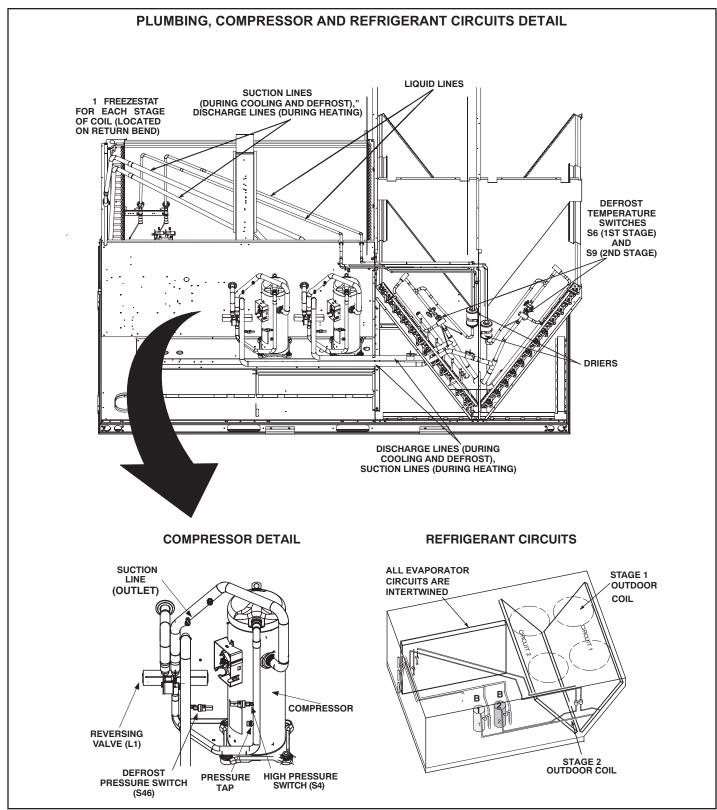

The defrost board uses two LEDs for diagnostics. The LEDs flash a sequence according to the condition.

	TABLE 2								
Defrost Co	Defrost Control Board Diagnostic LED								
Indicates	LED1	LED2							
Normal operation / power to board	Synchronized Flash with LED 2	Synchronized Flash with LED 1							
Board failure / no power	Off	Off							
Board failure	On	On							
Pressure switch open	Flash	On							

FIGURE 5

MIMPORTANT

The Clean Air Act of 1990 bans the intentional venting of refrigerant (CFC's and HCFC's) as of July 1, 1992. Approved methods of recovery, recycling or reclaiming must be followed. Fines and/or incarceration may be levied for non-compliance.

All units use independent cooling circuits consisting of separate compressors, condenser coils and evaporator coils. See FIGURE 6. Draw-through type condenser fans are used in all units. All units are equipped with belt-drive blowers which draw air across the evaporator during unit operation.

Cooling may be supplemented by an optional factory- or field-installed economizer. The evaporators are slab type and are stacked. Each evaporator uses a thermostatic expansion valve as the primary expansion device. Each evaporator is also equipped with enhanced fins and rifled tubing. In all units each compressor is protected by a freezestat (on each evaporator) and a high pressure switch (on each discharge line). Optional field installed low ambient switches are available for additional compressor protection.

1-Compressors B1, B2 (all units)

Both units are equipped with two scroll compressors. All units are equipped with independent cooling circuits. Compressor capacity may vary from stage to stage. In all cases, the capacity of each compressor is added to reach the total capacity of the unit. See "SPECIFICATIONS" and "ELECTRICAL DATA" (table of contents) or compressor nameplate for compressor specifications.

Each compressor is energized by a corresponding compressor contactor.

NOTE - Refer to the wiring diagram section for specific unit operation.

WARNING

Electrical shock hazard. Compressor must be grounded. Do not operate without protective coverover terminals. Disconnect power before removing protective cover. Discharge capacitors before servicing unit. Failure to follow these precautions could cause electrical shock resulting in injury or death.

2-Reversing Valves L1 and L2

A refrigerant reversing valve with a 24 volt solenoid coil is used to reverse refrigerant flow during unit operation. The reversing valve is connected in the vapor line of the refrigerant circuit. The reversing valve coil is energized during cooling demand and during defrost.

3-High Pressure Switches S4 and S7

The high pressure switch is an auto-reset SPST N.C switch which opens on a pressure rise. The switch is located in the compressor discharge line and is wired in series with the compressor contactor coil. Units are equipped with two switches.

S4 (first circuit) and S7 (second circuit) are wired in series with the respective compressor contactor coils. When discharge pressure rises to 640 ± 10 psig (4413 ± 69 kPa) (indicating a problem in the system) the switch opens and the respective compressor is de-energized (the economizer can continue to operate). S4 and S7 will close once the pressure falls to 475 ± 20 psig (3275 ± 138 kPa)

4-Crankcase Heaters HR1 and HR2

Units use belly-band type crankcase heaters. HR1 is installed around compressor B1, heater HR2 compressor B2. Crankcase heater wattage varies by compressor size.

5-Low Ambient Kit

The Low ambient kit is optional and field installed. This kit has 2 temperature switches (S201, S202) and 2 head pressure controllers (A190, A191). This kit allows mechanical cooling operation by maintaining liquid pressures at low outdoor temperatures, by stopping or slowing the outdoor fans.

When ambient temperature drops below 55°F, S201 and S202 open de-energizing K10 and K150, de-energizing condenser fans 1 (B4) & 3 (B21). When the liquid pressure falls below 355psig, the liquid line pressure transducers A188, A189 convert the pressure to analog signal which is sent to the head pressure control units (A190, A191). The head pressure control provides a variable output which slows condenser fans 2 (B4) and fan 4 (B22) operation to maintain optimum liquid pressure . All the fans cycles to full speed above 355 psig and in heating mode.

6-Filter Drier (all units)

Units have a bi-flow filter drier located in the liquid line of each refrigerant circuit in the compressor compartment. The drier removes contaminants and moisture from the system.

7-Freezestats S49, S50

Each unit is equipped with a low temperature switch located on a return bend of each evaporator coil. S49 (first circuit) and S50 (second circuit) are located on the corresponding evaporator coils.

Each freezestat is wired in series with the corresponding compressor contactor. Each freezestat is an auto-reset switch which opens at $29^{\circ}F \pm 3^{\circ}F$ (-1.7°C \pm 1.7°C) on a temperature drop and closes at $58^{\circ}F \pm 4^{\circ}F$ (14.4<u>0</u>C \pm 2.2°C) on a temperature rise. To prevent coil icing, Freezestats open during compressor operation to temporarily disable the respective compressor until the coil temperature rises.

8-Condenser Fans B4, B5, B21 and B22 (all units)

See SPECIFICATIONS tables at the front of this manual for specifications of condenser fans. All condenser fans used have single-phase motors. The fan assembly may be removed for servicing and cleaning.

9-Defrost Components and Operation

a-Defrost Pressure Switch S46 and S104

The defrost pressure switches (S46 and S104) are auto-reset SPST N.C. pressure switches which open on a pressure rise. All units are equipped with these switches. The switches are located on the vapor line during heating cycle (discharge line during cooling and defrost cycle). S46 (refrigeration circuit one) is wired to the main control board CMC1. S104 (refrigeration circuit two) is wired to the heat pump control board CMC2.

When discharge pressure reaches $450 + 10 \text{ psig} (3103 \pm 69 \text{ kPa})$ (indicating defrost is completed) the switch opens.

The switch automatically resets when pressure in the vapor line drops to 300 ± 10 psig (2068 ± 69 kPa).

b-Defrost Thermostat Switches S6 and S9 (all units)

Defrost thermostat switches S6 (refrigeration circuit one) and S9 (refrigeration circuit two) are S.P.S.T. N.O. contacts which close on a temperature fall (initiating defrost). The switches are located on each of the expansion valve distributor assemblies at the inlet to the outdoor coil. The switches monitor the outdoor coil suction temperature to determine when defrost is needed. When the outdoor coil suction temperature falls to $35^{0}F \pm 4^{0}F$ ($1.7^{0}C \pm 2.2^{0}C$) the switch closes (initiating defrost after minimum run time of 30, 60, or 90 minutes). When the temperature rises to $60^{0}F \pm 5^{0}F$ ($15.6^{0}C \pm 2.8^{0}C$) the switch opens.

DEFROST OPERATION

Defrost operation of each of the two refrigeration circuits are controlled independently with separate timers, thermostats (S6 and S9) and pressure switches (S46 and S104). During heating operation when outdoor coil temperature drops to $35 \pm 4^{\circ}$, the defrost thermostat S6 or S9 closes initiating defrost.

When defrost begins, the reversing valve (L1 or L2) for the circuit in defrost mode is energized. Supplemental electric heat is then energized. All the fans B4, B5, B21, B22 de-energized by defrost control boards CMC1 and CMC2.

C-Blower Compartment

The blower compartment in is located between the evaporator coil and the compressor / control section on the opposite side of the condenser coil. The blower assembly is accessed by removing the screws on either side of the sliding base. The base pulls out as shown in FIGURE 7.

1-Blower Wheels

Units have two 15 in. x 15 in. (381 mm x 381 mm) blower wheels. Both wheels are driven by one motor mounted on a single shaft. Shaft bearings are equipped with grease ports for service.

2-Indoor Blower Motor B3

All units use three-phase single-speed blower motors. CFM adjustments are made by adjusting the motor pulley (sheave). Motors are equipped with sealed ball bearings. All motor specifications are listed in the SPECIFICATIONS (table of contents) in the front of this manual. Units may be equipped with motors manufactured by various manufacturers, therefore electrical FLA and LRA specifications will vary. See unit rating plate for information specific to your unit.

OPERATION / ADJUSTMENT

Blower Operation

Initiate blower demand at thermostat according to instructions provided with thermostat. Unit will cycle on thermostat demand. The following steps apply to applications using a typical electro-mechanical thermostat.

- Set thermostat or temperature control device fan switch to AUTO or ON. With fan switch in ON position, blower will operate continuously. With fan switch in AUTO position, the blower will cycle with demand.
- Blower and entire unit will be off when thermostat or temperature control device system switch is in OFF position.

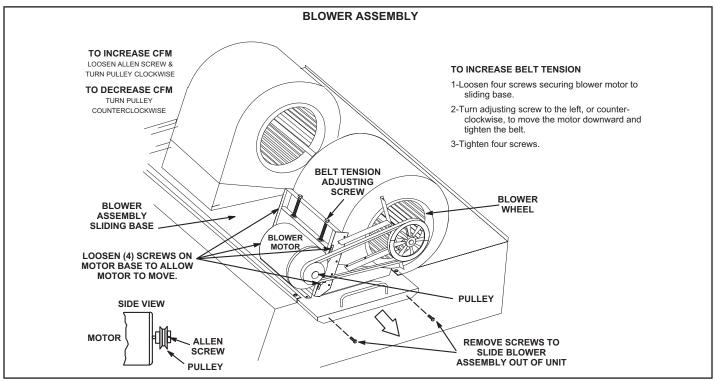
C-Blower Access

The blower assembly is secured to a sliding base which allows the entire assembly to be pulled out of the unit. See figure 7.

- 1 Remove the clamp which secures the blower wiring to the blower motor base.
- 2 Remove and retain screws on either side of sliding base. Pull base toward outside of unit. When pulling the base out further than 12" (305mm), disconnect wiring to K3 blower contactor T1, T2, and T3. Pull wiring toward blower to allow enough slack to slide the base out further.
- 3 Slide base back into original position when finished servicing. Replace the clamp and blower wiring in the previous location on the blower motor base. Reconnect wiring to K3 if it was disconnected.
- 4 Replace retained screws on either side of the sliding base.
- 5 Tighten two bolts on motor pulley side.

IMPORTANT - Align top edges of blower motor base and mounting frame base parallel before tightening two bolts on the other side of base. Motor shaft and blower shaft must be parallel.

6 - Tighten two bolts on other side of base.


D-Determining Unit CFM

IMPORTANT - Units are factory-set to run the blower at full speed when there is a blower (G) demand without a heating or cooling demand. Use the following procedure to adjust motor pulley to deliver the full load cooling or heating CFM. See Supply Air Inverter Start-Up section to set blower CFM for all modes once the motor pulley is set.

- The following measurements must be made with a dry indoor coil and with air filters in place. Run blower without a cooling demand. Measure the indoor blower shaft RPM.
- 2 With all access panels in place, measure static pressure external to unit (from supply to return). Blower performance data is based on static pressure readings taken in locations shown in FIGURE 8.

NOTE - Static pressure readings can vary if not taken where shown

- 3 Measure the indoor blower wheel RPM.
- 4 Refer to blower tables in BLOWER DATA (table of contents) in the front of this manual. Use static pressure and RPM readings to determine unit air volume.
- 5 The blower RPM can be adjusted at the motor pulley. Loosen Allen screw and turn adjustable pulley clockwise to increase CFM. Turn counterclockwise to decrease CFM. See FIGURE 7. Tighten Allen screw after adjustment. Do not exceed minimum and maximum number of pulley turns as shown in TABLE 3.

FIGURE 7

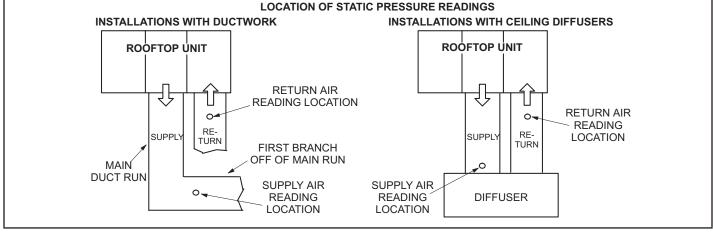
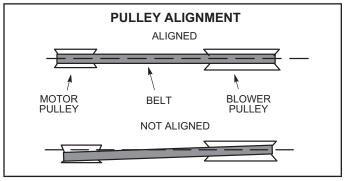


FIGURE 8


TABLE 3 MINIMUM AND MAXIMUM PULLEY ADJUSTMENT

Belt	Minimum Turns Open	Minimum Turns Open
A Section	No Minimum	5
B Section	1*	6

*No minimum number of turns open when B belt is used on pulleys 6" O.D. or larger.

E-Blower Belt Adjustment

Maximum life and wear can be obtained from belts only if proper pulley alignment and belt tension are maintained. Tension new belts after a 24-48 hour period of operation. This will allow belt to stretch and seat grooves. Make sure blower and motor pulley are aligned as shown in FIGURE 9.

FIGURE 9

- 1 Loosen four screws securing blower motor to sliding base. See FIGURE 7.
- 2 To increase belt tension -

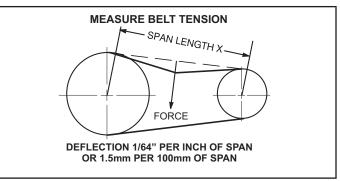
Turn belt tension adjusting screw to the left, or counterclockwise, to tighten the belt. This increases the distance between the blower motor and the blower housing.

To loosen belt tension -

Turn the adjusting screw to the right, or clockwise to loosen belt tension.

F-Check Belt Tension

Overtensioning belts shortens belt and bearing life. Check belt tension as follows:


- 1 Measure span length X. See FIGURE 10.
- 2 Apply perpendicular force to center of span (X) with enough pressure to deflect belt 1/64" for every inch of span length or 1.5mm per 100mm of span length.
 Example: Deflection distance of a 40" span would

be 40/64" or 5/8".

Example: Deflection distance of a 400mm span would be 6mm.

3 - Measure belt deflection force. For a used belt, the deflection force should be 5 lbs. (35kPa). A new belt deflection force should be 7 lbs. (48kPa).

A force below these values indicates an undertensioned belt. A force above these values indicates an overtensioned belt.

FIGURE 10

G-Field-Furnished Blower Drives

Use the BLOWER DATA TABLES at the front of this manual to determine BHP and RPM for field-furnished blower drives. TABLE 4 lists blower drives.

			DRIVE COMPONENTS								
		RP	М	ADJUSTABL	ADJUSTABLE SHEAVE		FIXED SHEAVE		TS	SPLIT B	USHING
Drive No.	H.P.	Min	Max	Supplier No.	OEM Part No.	Supplier No.	OEM Part No.	Supplier No.	OEM Part No.	Supplier No.	OEM Part No.
1	2, 3	535	725	1VP40x7/8	79J0301	BK95X1-7/16	80K1601	BX59	59A5001	N/A	N/A
2	2, 3	710	965	1VP40x7/8	79J0301	BK72x1-7/16	100244-13	BX55	63K0501	N/A	N/A
3	5	685	865	1VP50x1-1/8	P-8-1977	BK100x1-7/16	39L1301	BX61	93J9801	N/A	N/A
4	5	850	1045	1VP65x1-1/8	100239-03	BK110H	100788-06	BX65	100245-08	H-1-7/16	49M6201
5	5	945	1185	1VP60x1-1/8	41C1301	BK90H	100788-04	BX61	93J9801	H-1-7/16	49M6201
6	7.5	850	1045	1VP65x1-3/8	78M7101	BK110H	100788-06	BX66	97J5901	H-1-7/16	49M6201
7	7.5, 10	945	1185	1VP60x1-3/8	78L5501	BK90H	100788-04	BX63	97J5501	H-1-7/16	49M6201
8	7.5	1045	1285	1VP65x1-3/8	78M7101	BK90H	100788-04	BX64	97J5801	H-1-7/16	49M6201
10	10	1045	1285	1VP65x1-3/8	78M7101	1B5V86	78M8301	5VX670	100245-21	B-1-7/16	100246-01
11	10	1135	1365	1VP65x1-3/8	78M7101	1B5V80	100240-05	5VX660	100245-20	B-1-7/16	100246-01

TABLE 4

D-Optional Electric Heat Components

See ELECTRICAL / ELECTRIC HEAT (table of contents) for possible KCC to EHA match-ups and electrical ratings. All electric heat sections consist of electric heating elements exposed directly to the air stream. Two electric heat sections (first section and second section) are used in all 15kW through 90kW heaters used in KCC180/300 units. Multiple-stage elements are sequenced on and off in response to thermostat demand. EHA parts arrangement is shown in FIGURE 12 and FIGURE 13.

Control Box Components

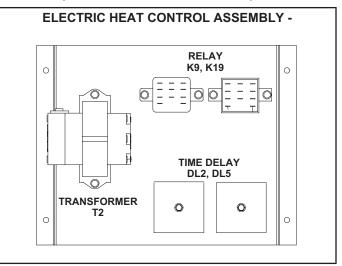
The main control box (FIGURE 2) houses some electric heat components and the electric heat control "hat" section.

Electric Heat Hat Section (FIGURE 11)

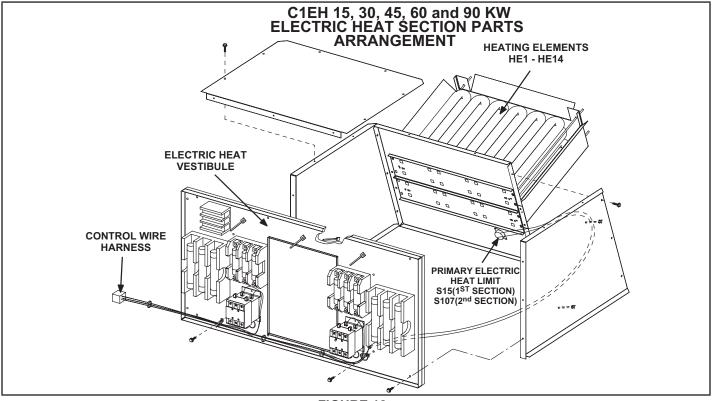
1-Electric Heat Relay K9

All KCC series units with electric heat use an electric heat relay K9. K9 is a N.O. DPDT pilot relay intended to electrically isolate the unit's 24V circuit from the electric heat assembly 24V circuit. K9 is energized by W1 TB1. K9-1 closes, enabling T2 to energize the electric heat.

2-Electric Heat Relay K19


All KCC series units with electric heat use an electric heat relay K19. K19 is a N.O. SPDT pilot relay intended to electrically isolate the unit's 24V circuit from the electric heat assembly 24V circuit. K19 is energized by TB1 (once K9 is energized). K19-1 closes, enabling T2 to energize the remaining electric heat.

3-Time Delay DL2


DL2 is a solid state timer used in all electric heat units. DL2 staggers the energizing of the first (W1) and second (W2) stage heating elements by providing a timed interval. When the timer is de-energizing, the contacts are delayed 1 second before opening.

4-Time Delay DL5

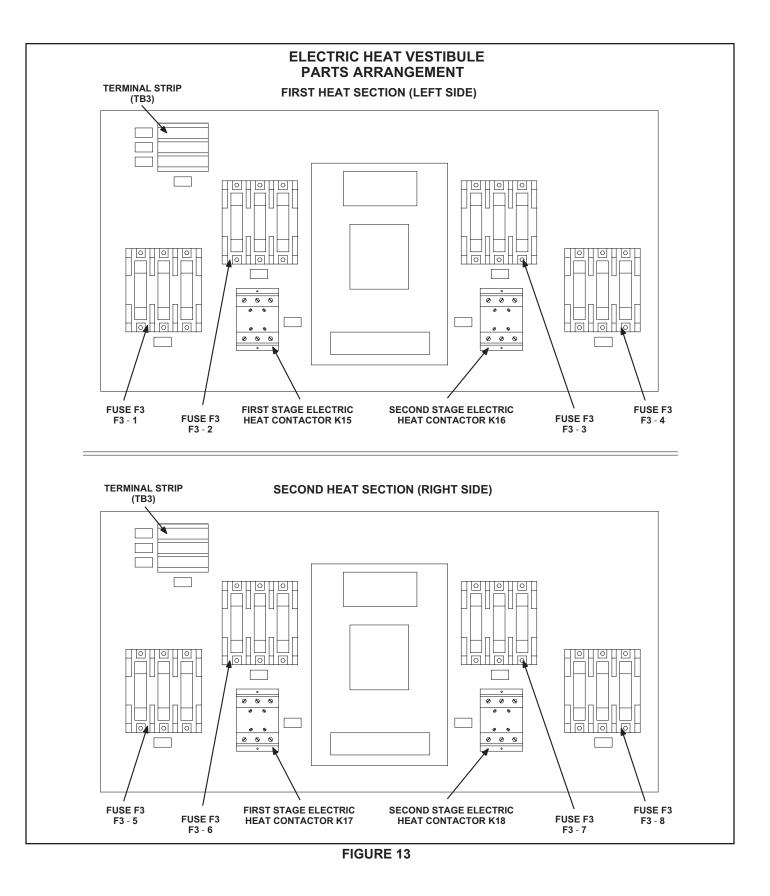

Time delay DL5 is identical to DL2. DL5 further staggers the (W2) second stage heating elements by providing a timed interval between the energizing of the elements activated by DL2 and elements activated by DL5

FIGURE 11

FIGURE 12

5-Electric Heat Transformer T2

All KCC series units with electric heat use a single line voltage to 24VAC transformer mounted in the electric heat control hat section in the control box. The transformer supplies power to all electric heat controls (contactors and coils). The transformer is rated at 70VA and is protected by a 3.5 amp circuit breaker CB13 located on the body of T2. The 208/230 (Y) voltage transformers use two primary voltage taps as shown in FIGURE 3. Transformer T2 is identical to T1.

Electric Heat Sections

6-Contactors K15, K16, K17 and K18

Contactors K15, K16, K17 and K18 are all three-pole double- break contactors located on the electric heat vestibule. K15 and K16 are located on the first electric heat section, while K17 and K18 are located on the second electric heat section. However, in the 15 and 30kW heaters, the first section houses all contactors and fuses. All contactors are equipped with a 24VAC coil. The coils in the K15, K16, K17 and K18 contactors are energized by the main panel A45. Contactors K15 and K17 energize the first stage heating elements, while K16 and K18 energize the second stage heating elements.

7-Fuse F3

Fuse F3 are housed in a fuse block which holds three fuses. Each F3 fuse is connected in series with each leg of electric heat. FIGURE 13 and TABLE 5 show the fuses used with each electric heat section. For simplicity, the service manual labels the fuses F3 - 1 through F3 - 8.

8-Terminal Strip TB3

Electric heat line voltage connections are made to terminal strip TB3 (or a fuse block on some models) located in the upper left corner of the electric heat vestibule.

9-High Temperature Limits S15 and S107

(Primary)

S15 and S107 are SPST N.C. auto-reset thermostats located on the back panel of the electric heat section below the heating elements. S15 is the high temperature limit for the first electric heat section, while S107 is the high temperature limit for the second electric heat section. Both thermostats are identical and are wired in series with the first stage contactor coil. When either S15 or S107 opens, indicating a problem in the system, contactor K15 is de-energized.

When K15 is de-energized, first stage and all subsequent stages of heat are de-energized. The thermostats used on EHA360-45- Y/G/J are factory set to open at 200F \pm 5°F (93.3°C \pm 2.8°C) on a temperature rise and automatically reset at 160°F \pm 6°F (71.1°C \pm 3.3°C) on a temperature fall. All other electric heat section thermostats are factory set to open at 170°F \pm 5°F (76.7°C \pm 2.8°C) on a temperature rise and automatically reset at 130°F \pm 6°F (54.4°C \pm 3.3°C) on a temperature fall. The thermostats are not adjustable.

10-Heating Elements HE1 through HE14

Heating elements are composed of helix wound bare nichrome wire exposed directly to the air stream. Three elements are connected in a three-phase arrangement. The elements in 208/230V units are connected in a "Delta" arrangement.

Elements in 460 and 575V units are connected in "Wye" arrangement. Each stage is energized independently by the corresponding contactors located on the electric heat vestibule panel. Once energized, heat transfer is instantaneous. High temperature protection is provided by primary and redundant high temperature limits and overcurrent protection is provided by fuses.

TABLE 5KCC180/300 ELECTRIC HEAT SECTION FUSE RATING

EHA QUANTITY &	VOLTAGES				FUSE	(3EACH)			
SIZE	VULIAGES	F3-1	F3-2	F3-3	F3-4	F3-5	F3-6	F3-7	F3-8
	208/230	50 Amp 250V	-	-	-	-		-	-
(1) EHA240-7.5 & (1) EHA240S-7.5 (15 kW Total)	460	25 Amp 600V	-	-	-	-	-	-	-
	575	20 Amp 600V	-	-	-	-	-	-	-
(1) EHA360-15 & (1) EHA360S-15	208/230	60 Amp 250V	60 Amp 250V	-	-	-	-	-	-
(30 kW Total) or	460	50 Amp 600V	-	-	-	-	-	-	-
(1) EHA156-15 & (1) EHA156S-15	575	40 Amp 600V	-	-	-	-	-	-	-
(2) EHA360-22.5	208/230	50 Amp 250V	-	-	25 Amp 250V	50 Amp 250V	-	-	25 Amp 250V
(45 kW Total) or	460	25 Amp 600V	-	-	15 Amp 600V	25 Amp 600V	-	-	15 Amp 600V
(2) EHA156-22.5	575	20 Amp 600V	-	-	10 Amp 600V	20 Amp 600V	-	-	10 Amp 600V
(2) EHA150-30 (60	208/230	50 Amp 250V	-	-	50 Amp 250V	50 Amp 250V	-	-	50 Amp 250V
kW Total) or	460	25 Amp 600V	-	-	25 Amp 600V	25 Amp 600V	-	-	25 Amp 600V
(2) EHA156-30	575	20 Amp 600V	-	-	20 Amp 600V	20 Amp 600V	-	-	20 Amp 600V
	208/230	50 Amp 250V	-	60 Amp 250V	60 Amp 250V	50 Amp 250V	-	60 Amp 250V	60 Amp 250V
(2) EHA360-45 (90 kW Total)	460	25 Amp 600V	-	-	50 Amp 600V	25 Amp 600V	-	-	50 Amp 600V
	575	20 Amp 600V	-	-	40 Amp 600V	20 Amp 600V	-	-	40 Amp 600V

II-PLACEMENT AND INSTALLATION

Make sure the unit is installed in accordance with the installation instructions and all applicable codes. See accessories section for conditions requiring use of the optional roof mounting frame.

III-STARTUP - OPERATION

Refer to startup directions and to the unit wiring diagram when servicing. See unit nameplate for minimum circuit ampacity and maximum fuse size.

A-Preliminary and Seasonal Checks

- 1 Make sure the unit is installed in accordance with the installation instructions and applicable codes.
- Inspect all electrical wiring, both field and factory installed for loose connections. Tighten as required. Refer to unit diagram located on inside of unit control box cover.
- 3 Check to ensure that refrigerant lines are in good condition and do not rub against the cabinet or other refrigerant lines.
- 4 Check voltage at the disconnect switch (if applicable) or TB2. Voltage must be within the range listed on the nameplate. If not, consult the power company and have the voltage corrected before starting the unit.
- 5 Recheck voltage and amp draw with unit running. If voltage is not within range listed on unit nameplate, stop unit and consult power company. Refer to unit nameplate for maximum rated load amps.
- 6 Inspect and adjust blower belt (see section on Blower Compartment Blower Belt Adjustment).

B-Cooling Start Up

- 1 Remove coil covers before starting unit.
- 2 Set thermostat or temperature control device fan switch to AUTO or ON. Set thermostat or temperature control device to initiate a first-stage cooling demand.

A first-stage (Y1) cooling demand will energize compressor 1 and outdoor fans 1 & 2. An increased cooling demand (Y2) will initiate compressor 2 and outdoor fans 3 & 4. On units with an economizer, when outdoor air is acceptable, a first-stage demand will energize the economizer; a second-stage demand will energize compressor 1 and outdoor fans 1 & 2.

- Refrigerant circuits are factory charged with R-410A refrigerant. See unit rating plate for correct amount of charge.
- 4 Units contain two refrigerant circuits or systems. See FIGURE 14.

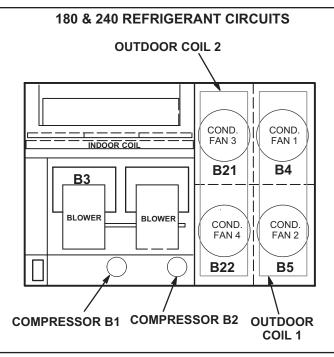


FIGURE 14

IV-CHARGING

Refrigerant can be harmful if it is inhaled. Refrigerant must be used and recovered responsibly. Failure to follow this warning may result in personal injury or death.

WARNING - Do not exceed nameplate charge under any condition.

This unit is factory-charged and should require no further adjustment. If the system requires additional refrigerant, reclaim the charge, evacuate the system and add required nameplate charge.

NOTE - System charging is not recommended below 60°F (15°C). In temperatures below 60°F (15°C), the charge must be weighed into the system.

If weighing facilities are not available, or to check the charge, use the following procedure:

- Attach gauge manifolds and operate unit in cooling mode with economizer disabled until system stabilizes (approximately five minutes). Make sure outdoor air dampers are closed.
- 2 Check each system separately with all stages operating.
- 3 Use a thermometer to accurately measure the outdoor ambient temperature.
- 4 Apply the outdoor temperature to TABLE 6 and TABLE 7 to determine normal operating pressures. Pressures are listed for sea level applications at 80°F dry bulb and 67°F wet bulb return air.

- 5 Compare the normal operating pressures to the pressures obtained from the gauges. Minor variations in these pressures may be expected due to differences in installations. Significant differences could mean that the system is not properly charged or that a problem exists with some component in the system. Correct any system problems before proceeding.
- 6 If discharge pressure is high, remove refrigerant from the system. If discharge pressure is low, add refrigerant to the system.
- Add or remove charge in increments.
- Allow the system to stabilize each time refrigerant is added or removed.
- 7 Use the following approach method along with the normal operating pressures to confirm readings.

KHC1	KHC180 NORMAL OPERATING PRESSURES									
Outdoor	Circ	uit 1	Circuit 2							
Coil En- tering Air Temp⁰F	ering Air bis. <u>1</u> 10		Dis. <u>+</u> 10 psig	Suc. <u>+</u> 5 psig						
65	253	137	265	133						
75	288	140	304	135						
85	330	142	346	138						
95	376	144	385	141						
105	423	147	445	144						
115	475	150	499	147						

TABLE 6

TABLE 7

KHC240 NORMAL OPERATING PRESSURES

Outdoor	Circ	uit 1	Circ	uit 2
Coil En- tering Air Temp⁰F	Dis. <u>+</u> 10 psig			Suc. <u>+</u> 5 psig
65	274	136	280	136
75	311	136	318	136
85	353	138	360	138
95	396	140	405	140
105	448	142	457	142
115	505	144	511	144

A-Charge Verification - Approach Method - AHRI Testing

1 - Using the same thermometer, compare liquid temperature to outdoor ambient temperature.

Approach Temperature = Liquid temperature (at condenser outlet) minus ambient temperature.

- 2 Approach temperatures should match values in TABLE 8. An approach temperature greater than this value indicates an undercharge. An approach temperature less than this value indicates an overcharge.
- 3 Do not use the approach method if system pressures do not match pressures in TABLE 6 and TABLE 7. The approach method is not valid for grossly over or undercharged systems.

TABLE 8

APPROACH TEMPERATURES

Unit	Liquid Temp. Minus Ambient Temp.					
Unit	1st Stage	2nd Stage				
180	3°F <u>+</u> 1	8°F <u>+</u> 1				
240	5°F <u>+</u> 1	9°F <u>+</u> 1				

V- SYSTEMS SERVICE CHECKS

A-Cooling System Service Checks

Units are factory charged and require no further adjustment; however, charge should be checked periodically using the approach method. The approach method compares actual liquid temperature with the outdoor ambient temperature. See section IV- CHARGING.

NOTE - When unit is properly charged discharge line pressures should approximate those in TABLE 6 and TABLE 7.

VI-MAINTENANCE

The unit should be inspected once a year by a qualified service technician.

A WARNING

Electric shock hazard. Can cause injury or death. Before attempting to perform any service or maintenance, turn the electrical power to unit OFF at disconnect switch(es). Unit may have multiple power supplies.

As with any mechanical equipment, contact with sharp sheet metal edges can result in personal injury. Take care while handling this equipment and wear gloves and protective clothing.

Label all wires prior to disconnection when servicing controls. Wiring errors can cause improper and dangerous operation. Verify proper operation after servicing.

WARNING

Product contains fiberglass wool.

Disturbing the insulation in this product during installation, maintenance, or repair will expose you to fiberglass wool. Breathing this may cause lung cancer. (Fiberglass wool is known to the State of California to cause cancer.)

Fiberglass wool may also cause respiratory, skin and eye irritation.

To reduce exposure to this substance or for further information, consult material safety data sheets available from address shown on unit nameplate or contact your supervisor.

A-Filters

Units are equipped with six 24 X 24 X 2" filters. Filters should be checked and replaced when necessary with filters of like kind and size. Take note of air flow direction marking on filter frame when reinstalling filters. See FIG-URE 15.

NOTE - Filters must be U.L.C. certified or equivalent for use in Canada.

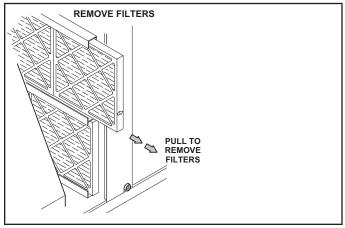


FIGURE 15

B-Lubrication

All motors used in these units are factory lubricated, no further lubrication is required.

Blower shaft bearings are prelubricated. For extended bearing life, relubricate at least once every two years with a lithium base grease such as Alvania 3 (Shell Oil), Chevron BRB2 (Standard OII) or Regal AFB2 (Texas Oil). Use a hand grease gun for lubrication. Add only enough grease to purge through the bearings so that a bead of grease appears at the seal lip contacts.

C-Indoor Coil

Inspect and clean coil at beginning of each cooling season. Clean using mild detergent or commercial coil cleaner. Flush coil and condensate drain with water taking care not to get insulation, filters and return air ducts wet.

D-Supply Air Blower Wheel

Annually inspect supply air blower wheel for accumulated dirt or dust. Turn off power before attempting to remove access panel or to clean blower wheel.

E-Electrical

- 1 Check all wiring for loose connections.
- 2 Check for correct voltage at unit (unit operating).
- 3 Check amp-draw on both condenser fan motor and blower motor.

Fan Motor Rating Plate ____ Actual ____

Indoor Blower Motor Rating Plate____ Actual___

VII-OPTIONAL ACCESSORIES

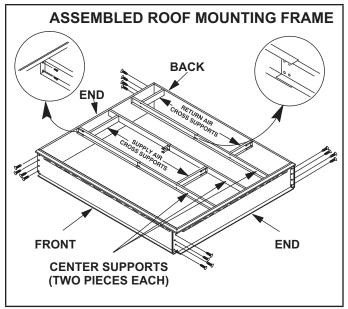
The accessories section describes the application of most of the optional accessories.

A-C1CURB, LARMF and LARMFH Mounting Frames

When installing units on a combustible surface for downflow discharge applications, the C1CURB40 (8-inch), or LARMF18/30S or 18/36 14-inch, 18-inch or 24-inch (356 mm or 610mm) roof mounting frame is used. An adjustable, pitched curb (L1CURB55C) is also available.

For horizontal discharge applications, use LARMFH18/24 26-inch or 37-inch (660mm or 940mm) roof mounting frame. This frame converts unit from downflow to horizontal air flow. The roof mounting frames are recommended in all other applications but not required. If the units are not mounted on a flat (roof) surface, they MUST be supported under all edges and under the middle of the unit to prevent sagging.

The units MUST be mounted level within 1/16" per linear foot or 5mm per meter in any direction. The assembled mounting frame is shown in FIGURE 16. Refer to the roof mounting frame installation instructions for details of proper assembly and mounting. The roof mounting frame MUST be squared to the roof and level before mounting. Plenum system MUST be installed before the unit is set on the mounting frame. Typical roof curbing and flashing is shown in FIGURE 17. Refer to the roof mounting frame installation instructions for proper plenum construction and attachment.


B-Transitions

Optional supply/return transitions LASRT18 and LAS-RT21/24 are available for use with units utilizing optional

LARMF18/36 roof mounting frame. Transition must be installed in the mounting frame before setting the unit on the frame. Refer to the manufacturer's instructions included with the transition for detailed installation procedures.

C-Supply and Return Diffusers (all units)

Optional flush mount diffuser/return FD11 and extended mount diffuser/return RTD11 are available for use with all units. Refer to manufacturer's instructions included with transition for detailed installation procedures.

FIGURE 16

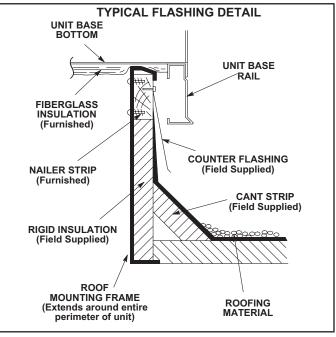


FIGURE 17

D-Economizer

Unit may contain an optional modulating economizer equipped with an A6 enthalpy control and an S175 outdoor temperature sensor or A7 enthalpy sensor. The economizer modulates to use outdoor air for free cooling when temperature is suitable.

The A6 enthalpy control is located in the economizer access area. See FIGURE 18. The S175 temperature sensor or A7 enthalpy sensor is located on the division panel between horizontal supply and return air sections.

Optional Sensors

An optional differential sensor (A62) may be used with the A7 outdoor sensor to compare outdoor air enthalpy to return air enthalpy. When the outdoor air enthalpy is below the return air enthalpy, outdoor air is used for free cooling.

A mixed air sensor (R1) is used in modulating the dampers to 55°F (13°C) blower compartment air temperature.

An optional IAQ sensor (A63) may be used to lower operating costs by controlling outdoor air based on CO2 level or room occupancy (also called demand control ventilation or DCV). Damper minimum position can be set lower than traditional minimum air requirements; dampers open to traditional ventilation requirements when CO2 level reaches DCV (IAQ) setpoint.

Refer to instructions provided with sensors for installation.

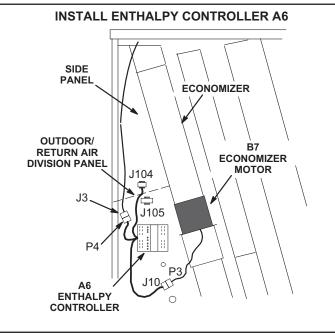
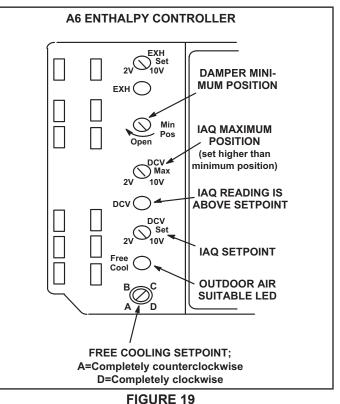



FIGURE 18

A6 Enthalpy Control LEDs

A steady green Free Cool LED indicates that outdoor air is suitable for free cooling.

When an optional IAQ sensor is installed, a steady green DCV LED indicates that the IAQ reading is higher than setpoint requiring more fresh air. See FIGURE 19.

Free Cooling Setpoint

Single Temperature or Enthalpy Sensing:

The enthalpy control (A6) setpoint may be adjusted when an enthalpy (A7) sensor is used to determine outdoor air suitability, See FIGURE 19.

Free cooling will be enabled when outdoor air temperature or enthalpy are lower than the free cooling setpoint. The free cooling setpoints for sensible temperature sensors is 55°F. TABLE 9 shows the free cooling setpoints for enthalpy sensors. Use the recommended setpoint and adjust as necessary.

For example: At setting A (TABLE 9), free cooling will be enabled when outdoor air enthalpy is lower than $73^{\circ}F$ and 50% RH. If indoor air is too warm or humid, lower the setpoint to B. At setting B, free cooling will be enabled at $70^{\circ}F$ and 50% RH.

TABLE 9

ENTHALPY FREE COOLING SETPOINTS

Control Setting	Enthalpy Setpoint At 50% RH
A*	73° F (23° C)
В	70° F (21° C)
С	67° F (19° C)
D	63° F (17° C)

*Setting A is recommended.

Differential Sensing:

Two sensors can be used to compare outdoor air to return air. When outdoor air is cooler than return air, outdoor air is suitable for free cooling. Adjust the free cooling setpoint to "D" in this application.

When return air is cooler than outdoor air, the damper will modulate to the minimum position.

Damper Minimum Position

NOTE - A jumper is factory-installed between TB1 R and OC terminals to maintain occupied status (allowing minimum fresh air). See FIGURE 20. When using an electronic thermostat or energy management system with an occupied/ unoccupied feature, remove jumper. Make wire connections to R and OC as shown in literature provided with thermostat or energy management system literature. Either the jumper wire or optional device must be connected to R and OC for the economizer to function.

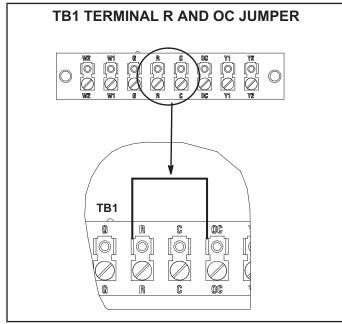


FIGURE 20

- Set thermostat to occupied mode if the feature is available. Make sure jumper is in place between TB1 terminals R and OC if using a thermostat which does not have the feature.
- 2 Rotate MIN POS SET potentiometer to approximate desired fresh air percentage.

NOTE - Damper minimum position can be set lower than traditional minimum air requirements when an IAQ sensor is specified.

- 3 Measure outdoor air temperature. Mark the point on the bottom line of chart 1 and label the point "A" (40°F, 4°C shown).
- 4 Measure return air temperature. Mark that point on the top line of chart 1 and label the point "B" (74°F, 23°C shown).
- 5 Measure mixed air (outdoor and return air) temperature. Mark that point on the top line of chart 1 and label point "C" (70°F, 21°C shown).
- 6 Draw a straight line between points A and B.
- 7 Draw a vertical line through point C.
- 8 Draw a horizontal line where the two lines meet. Read the percent of fresh air intake on the side.
- 9 If fresh air percentage is less than desired, adjust MIN POS SET potentiometer clockwise (further open). If fresh air percentage is more than desired, adjust MIN POS SET potentiometer counterclockwise (less open). Repeat steps 3 through 8 until calculation reads desired fresh air percentage.

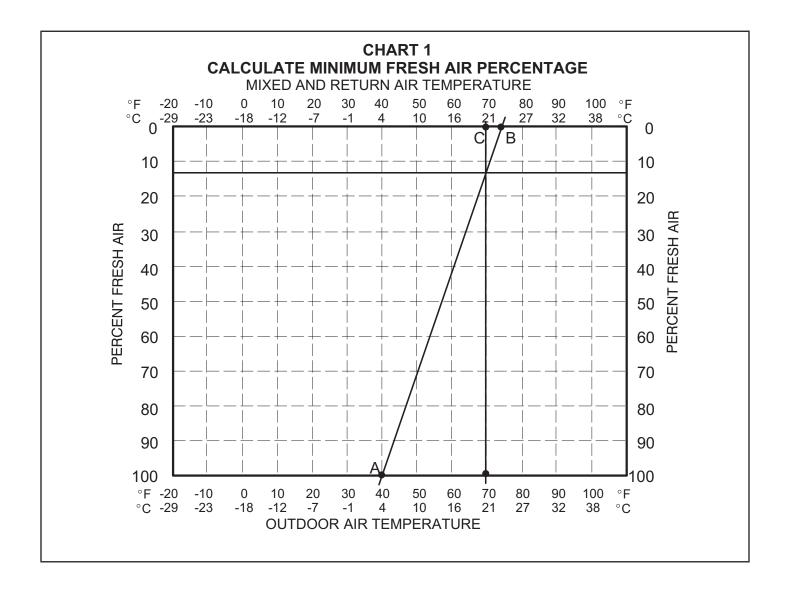
DCV Set and Max Settings

The DCV SET potentiometer is factory-set at approximately 50% of the potentiometer range. Using a standard 1-2000ppm CO2 sensor, dampers will start to open when the IAQ sensor reads approximately 1000ppm. Adjust the DCV SET potentiometer to the approximate setting specified by the controls contractor. Refer to FIGURE 19.

The DCV MAX potentiometer is factory-set at approximately 50% of the potentiometer range or 6VDC. Dampers will open approximately half way when CO2 rises above setpoint. Adjust the DCV MAX potentiometer to the approximate setting specified by the controls contractor. Refer to FIGURE 19.

NOTE - DCV Max must be set higher than economizer minimum position setting for proper demand control ventilation.

Economizer Operation


When the outdoor air is suitable, dampers will modulate between minimum position and full open to maintain $55^{\circ}F$ (12.8°C) supply air.

See TABLE 10 for economizer operation when outdoor air is suitable. See TABLE 11 for economizer operation when outdoor air is NOT suitable.

IAQ Sensor

During the occupied period, dampers will open to DCV MAX when IAQ reading is above setpoint (regardless of thermostat demand or outdoor air suitability). DCV MAX will NOT override damper full-open position. The DCV MAX setting may override damper free cooling position when occupancy is high and outdoor air temperatures are low.

NOTE - R1 senses mixed air temperature below 45°F (7°C), dampers will move to minimum position until mixed air temperature rises to 48F (9°C).

TABLE 10

ECONOMIZER OPERATION-OUTDOOR AIR IS SUITABLE FOR FREE COOLING -- FREE COOL LED "ON"

Thermostat Demand	Damper Position		Machanical Cooling
	Unoccupied	Occupied	Mechanical Cooling
Off	Closed	Closed	No
G	Closed	Minimum	No
Y1	Modulating	Modulating	No
Y2	Modulating	Modulating	Stage 1

TABLE 11

ECONOMIZER OPERATION-OUTDOOR AIR IS NOT SUITABLE FOR FREE COOLING -- FREE COOL LED "OFF"

Thermostat Demand	Damper Position		Machanical Cooling
	Unoccupied	Occupied	Mechanical Cooling
Off	Closed	Closed	No
G	Closed	Minimum*	No
Y1	Closed	Minimum*	Stage 1
Y2	Closed	Minimum*	Stage 2

*IAQ sensor can open damper to DCV max.

Standard and High Performance

Economizer Minimum Position

NOTE - 24 volts must be provided at unit TB1 terminals R and OC to enable economizer operation (allowing minimum fresh air). Typically a separately ordered thermostat or energy management system with an occupied/unoccupied output is connected between TB1 R and OC terminals. The thermostat will provide 24 volts to the A6 economizer control during the occupied time period to enable economizer minimum position. If a device is not used to enablethe economizer, install a jumper wire between TB1 terminals R and OC to maintain minimum position continuously.

Make wire connections to **TB1** terminals **R** and **OC** as shown in literature provided with thermostat or energy management system.

- Set thermostat to occupied mode if the feature is available. Make sure jumper is in place between TB1 terminals R and OCP if using a thermostat which does not have the feature.
- 2 Turn on the blower using the thermostat or a jumper between TB1 terminals R and G.

IMPORTANT - On unit equipped with an inverter (VFD) driven supply air blower motor, the VFD control board controls the economizer minimum damper position. Refer to the unit installation instructions for additional setup requirements.

3 - Standard Economizers -

Rotate MIN POS SET potentiometer to approximate desired fresh air percentage.

High Performance Economizers-

On units with single-speed blowers, navigate to the "BASIC SETTINGS" menu and select "2FAN H ACT". Adjust value (2-10VDC) to the approximate desired fresh air percentage. On units with two-speed blowers, once high speed minimum position is set (steps 4. through 11.), adjust "2FAN L ACT" in the same manner.

3.0 VDC 12% Open Damper
3.5 VDC 18% Open Damper
4.0 VDC 25% Open Damper
4.5 VDC 31% Open Damper
5.0 VDC 37% Open Damper
5.5 VDC 43% Open Damper
6.0 VDC 50% Open Damper

NOTE - Damper minimum position can be set lower than traditional minimum air requirements when an IAQ sensor is specified.

- 4 High Performance Economizers -
 - Navigate through the "BASIC SETTINGS" menu and select "7DAMPER MIN POS". Damper will drive to the setpoint value stored in step 3.
- 5 Measure outdoor air temperature. Mark the point on the bottom line of chart 1 (figure 21) and label the point "A" (40°F, 4°C shown).
- 6 Measure return air temperature. Mark that point on the top line of chart 1 and label the point "B" (74°F, 23°C shown).
- 7 Measure mixed air (outdoor and return air) temperature. Mark that point on the top line of chart 1 and label point "C" (70°F, 21°C shown).
- 8 Draw a straight line between points A and B.
- 9 Draw a vertical line through point C.
- 10 Draw a horizontal line where the two lines meet. Read the percent of fresh air intake on the side.

11. Standard Economizers -

If fresh air percentage is less than desired, adjust MIN POS SET potentiometer clockwise (further open). If fresh air percentage is more than desired, adjust MIN POS SET potentiometer counterclockwise (less open). Repeat steps 5. through 10. until calculation reads desired fresh air percentage.

High Performance Economizers -

If fresh air percentage is less than desired, use the A6 keypad to adjust "2FAN H ACT" values higher (further open). If fresh air percentage is more than desired, adjust "2FAN H ACT" values lower (less open). Repeat steps 4. through 10. until calculation reads desired fresh air percentage. On units with two-speed blowers, after high speed is adjusted, use "2FAN L ACT" in the same manner.

High Performance Economizer Installation

NOTE - Refer to the General section when replacing a factory- installed economizer with shipping screws.

DAMPERS

1 - Disconnect all power to unit and open filter access panel.

- 2 Remove horizontal return air panel.
- Align bottom of economizer with economizer support bracket and slide economizer into unit. Make sure the flanges align as shown in FIGURE 24.
- 4 Fit economizer end plate over end of economizer and secure end plate with #10 self drilling screws.

ECONOMIZER CONTROL (A6) INSTALLATION

 Install A6 economizer control on economizer side panel as shown in FIGURE 25. Secure with #6-32 X 7/8" TFS screws provided.

MIXED AIR SENSOR (R1) INSTALLATION

- 1 Remove blower access panel.
- 2 Install sensor on bracket as shown in FIGURE 22 and FIGURE 23.

OUTDOOR AIR SENSOR (RT26) INSTALLATION

 Install RT26 sensor onto the divider panel as shown in FIGURE 26. Use #6-32 X 7/8" TFS screws provided.

NOTE - When enthalpy sensing is specified, A7 enthalpy sensor is installed in the same location as RT26.

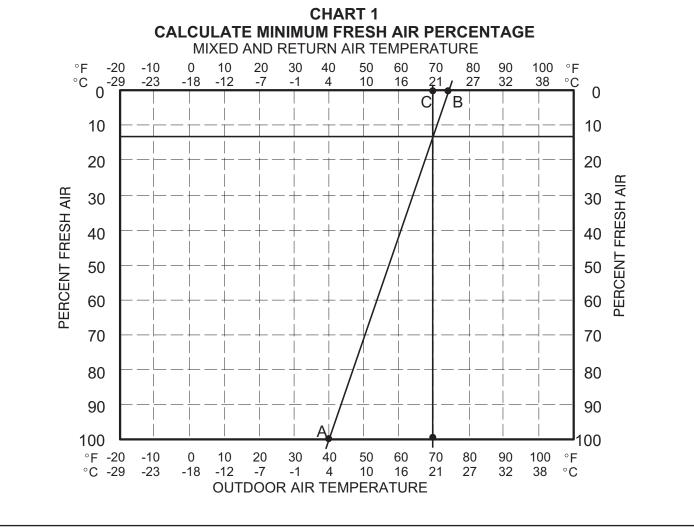
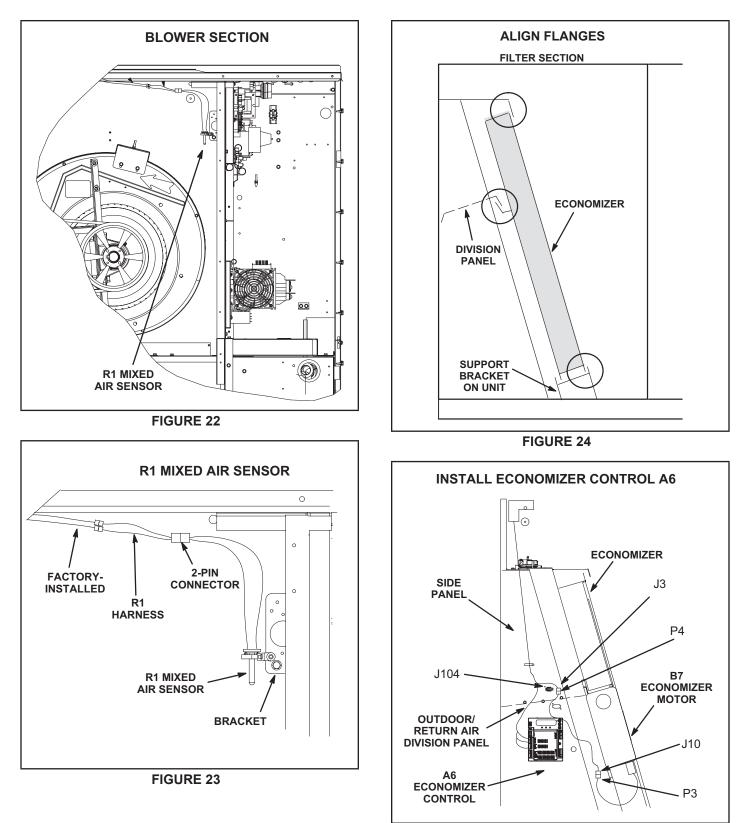
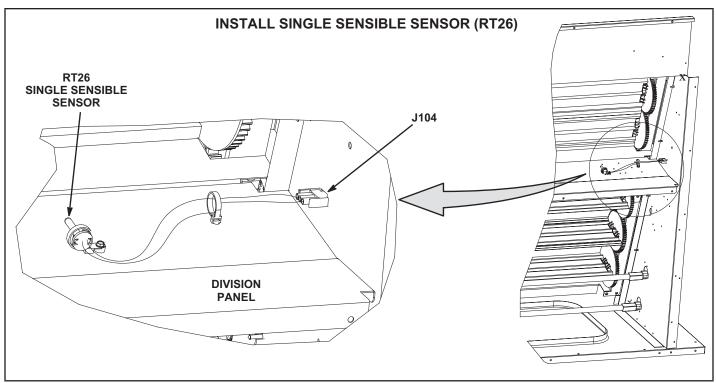




FIGURE 21

FIGURE 25

FIGURE 26

High Performance Economizer Electrical ECONOMIZER CONTROL (A6) HARNESS CONNECTIONS

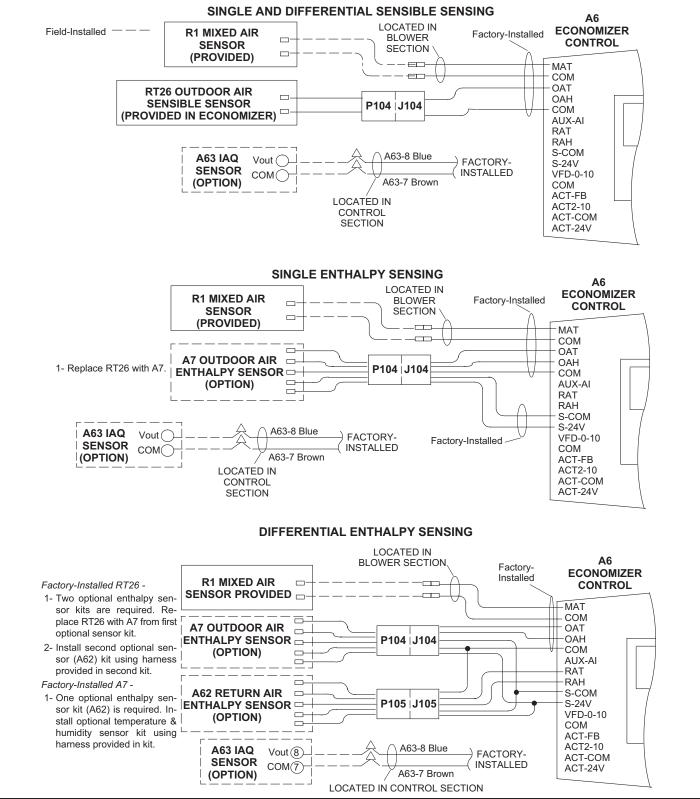
NOTE - Wires marked P and P1 are hanging in the control section. These wires are connected on units equipped with standard economizers AND a VFD only.

- Locate 15-pin J3 unit control harness hanging on left side of filter compartment. See FIGURE 25. Disconnect P3 jumper plug from J3 and retain jumper plug for future troubleshooting.
- 2 Connect the 15-pin male plug P4 from the economizer control (A6) harness to the 15-pin female jack J3 on the unit control harness. See FIGURE 25.
- 3 Locate brown and yellow kit harness with wires labeled J104-1 & J104-2 on one end and A6-OAT, A6-COM, & A6-AUX-A1 on the other end. Insert the connector with wires labeled J104-1 & 2 into the opening on economizer side panel and snap into place. See FIGURE 25.
- 4 Connect the 15-pin female plug J10 to the 15-pin male plug P3 from the damper motor. See FIGURE 25.
- 5 Affix D1 economizer wiring diagram section to inside of compressor access panel. Position diagram to the right of "C" control wiring diagram section

MIXED AIR SENSOR CONNECTION (R1)

 Locate two wires labeled R1 in wire bundle in top of blower section. Connect spade terminals on R1 harness to the wires from the bundle. Connect the R1 harness 2-pin connector to the R1 2-pin connector. See FIGURE 27. Make sure to secure wires away from moving parts.

RT26 HARNESS CONNECTIONS (Single Sensible Sensing)

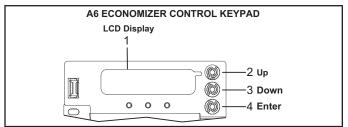

 Locate brown and white kit harness with wires labeled P104-1 & P104-2 one one end and RT26-1 & 2 on the other end. Insert the connector with wires labeled P104-1 & 2 into J104 jack previously installed on the side of the economizer. See figure 40. Connect wires on other end of P104 harness to RT26 on divider panel. See FIGURE 31.

A63 OPTIONAL SENSOR CONNECTIONS (CO2 Sensing)

An optional CO2 sensor (A63) can be added for demand control ventilation (DCV). The IAQ sensor must provide a 0-10VDC signal to the A6 controller.

Refer to installation instructions shipped with optional sensor for more details.

- 1 Locate the blue wire labeled A63-8 and brown wire labeled A63-7 from the harness in the control section. Strip ends.
- 2 Connect blue A63-8 wire to CO2 sensor Vout lead.
 Connect brown A63-7 wire to CO2 sensor COM lead. Securewith wire nut. See FIGURE 27.



High Performance Economizer Control USER INTERFACE

See FIGURE 28.

- 1 One-line LCD. After a period of inactivity, the controller displays the default HMI screen (free cooling status: "1FREECOOL YES" or "1FREECOOL NO").
- 2 Operation button (Up button) Move to the previous value, step or category.
- 3 Operation button (Down button)- Move to the next value, step or category.

FIGURE 28

- 4 Operation button (Enter button):
- Press to edit the current value or option.
- Press to confirm a newly selected value or option.
- Press Enter + Up to jump up one entire category.
- Press Enter + Down to jump down one entire category.

MENU STRUCTURE

See FIGURE 29.

FIGURE 29

- Menus are displayed in the Economizer Controller as per categories. There are eight first-level menus. Each menu is represented by a number at the beginning of the line on the LCD. Press Enter + Up or Down to toggle between different first-level menus.
- 1: Status Display
- 2: Basic Settings
- 3: Advanced Settings
- 4: Alarms
- 5: Enter Configuration State and Reset
- 6: I/O Config.
- 7: Testing
- 8: Enter Running State

- 2 Sub-menus follow the numbered first-level menus closely. Pressing Up or Down can toggle between different sub-menus.
- 3 At the end of the line, the LCD displays the value of the current sub-menu (if any). Enter the Edit mode by pressing Enter (if the value is editable). Press Up or Down to change the highlighted value. Press Enter to confirm the change and exit the Edit mode.

For a complete list of parameters refer to the Siemens installation manual provided in this kit.

FREE COOLING SETPOINT

Single OA Sensible Sensing (Default)

The default free cooling setpoint or high limit setpoint is 63° F. This means that the outdoor air is suitable for free cooling at 62° F and below and not suitable at 64° F and above. This setpoint is adjustable.

For California Title 24 compliance, adjust the free cooling setpoint based on:

-The climate zone where the unit is installed. See TA-BLE 12.

-The setpoint requirement published by the California Energy Commission. See Section 140.4 - Prescriptive Requirements for Space Conditioning Systems of the 2013 Building Energy Efficiency Standards.

NOTE - Values in the referenced standard will supersede values listed in TABLE 12.

TABLE 12

FREE COOLING SETPOINT - SINGLE SENSIBLE

Climate Zone	Set point °F
1, 3, 5, 11-16	75
2, 4, 10	73
6, 8, 9	71
7	69

To adjust the setpoint, navigate to the "BASIC SETTINGS" menu and change the "2TEMP OFF" parameter accordingly.

Single OA Enthalpy Sensing (Optional) -

To adjust the enthalpy setpoint, navigate to the "BASIC SETTINGS" menu and change the "2ENTH OFF" parameter accordingly.

Differential Sensing (Optional)

Two sensors can be used to compare outdoor air to return air. When outdoor air is cooler than return air, outdoor air is suitable for free cooling. When return air is cooler than outdoor air, the damper will modulate to the minimum position.

SETUP AND CONFIGURATION - FACTORY-INSTALLED ECONOMIZER

Program the following parameters into the controller. Navigate to the specific menus to make the changes required.

1INS

• (MM/DD/YY) enter installation date

2FAN LACT*

• () adjust VDC value until desired resh air setpoint is reached when fan runs at low speed. *Appears only *if unit is configured as 2SPEED.*

2FAN H ACT

• () adjust VDC value until desired fresh air setpoint is reached

SETUP AND CONFIGURATION - FIELD-INSTALLED ECONOMIZER

Program the following parameters into the controller. Navigate to the specific menus to make the changes required.

IMPORTANT - Before setup and configuration, it is recommended to obtain some location-based values such as shutoff points or utilize the location services in the Climatix mobile application.

Menus are displayed in the Economizer Controller as per categories. There are eight first-level menus. Each of them is represented by a number at the beginning of the line on the LCD. Press Enter + Up or Down to toggle between different first-level menus.

Navigate to the applicable menus and set the following parameters based on the unit configuration:

1INS

• (MM/DD/YY) enter installation date

2FAN LACT

• () adjust VDC value until desired fresh ir set point is reached when fan runs at low speed (*Appears only if unit is configured as 2SPEED)

2FAN H ACT

• () adjust VCD value until desired fresh air set point is reached

3DIF T LOC (LAT)

3STG3 DLY (120)

6Y2O

- (NONE) For single-stage units
- (COOL 2) For 2-stage units

6FAN

- (1 SPEED) For CAV units
- (2 SPEED) For MSAV units

ALARM MONITORING

The controller is equipped with a 24V output signal that can be configured for remote alarm monitoring. Field-wire to provided blue wire marked "Aux2-O" near the controller for remote alarm monitoring. **Note -** Newer units are factory-wired to facilitate feedback wiring connections when a BACnetTM option is installed. Newer units can be identified by a P372 plug located near TB1 in the control box. One white and one gray wire are connected to P372. On older units, call 1-800-453-6669 for wiring assistance.

DEMAND CONTROL VENTILATION (DCV)

When a 010VDC CO2 sensor is wired to the POL224.00 economizer control A6 (leads provided), the 2DCV, 2VENTMAX L, 2VENTMAX H, 2 VENTMIN L and 2VENTMIN H parameters will appear under "BASIC SETTINGS" menu. Navigate to the "BASIC SETTINGS" menu to adjust setpoints as desired. Refer to the Siemens manual provided for more details.

For proper operation, the IAQ sensor must provide a 0-10VDC signal to the A6 controller.

CO₂ Sensor Used With High Performance Economizers-

When using any 0-10VDC sensor, set the ppm range using the POL224.00 economizer control A6 menu. Set the 6CO2 Rng L to 400 ppm and the 6CO2 Rng H to 1600 ppm.

High Performance Economizer Sequence of Operation

Refer to TABLE 13, TABLE 14, TABLE 15 or TABLE 16.

When the outdoor air is suitable and a thermostat demand calls for 1st. stage cooling (Y1), the economizer will modulate the dampers between the minimum and fully open positions to maintain a 55°F (12.8°C) mixed air temperature. When there is an increased thermostat demand for second stage cooling (Y2), the economizer damper opens 100% and the economizer controller (A6) will bring on the compressor. The damper will stay open 100% with the compressor running simultaneously until Y2 demand is met.

NOTE – If a two-speed fan is installed, the economizer controller (A6) will delay the compressor start for 5 minutes (default). To adjust the delay from 1 to 20 minutes, adjust the "2FAN DLY" setting.

NOTE – When there is a Y1 cooling demand, the economizer controller (A6) will display the mixed air temperature (R1). When there is a Y2 cooling demand and compressors are operating, the economizer controller (A6) will display the outdoor air temperature (RT26 or A7). In either case, the economizer controller (A6) will use the mixed air sensor for low temperature lock-out.

TROUBLESHOOTING, ALARMS AND\ CHECKOUT TESTS

Refer to the Siemens manual provided for details.

TABLE 13 ECONOMIZER OPERATION - NO DCV (CO2 SENSOR, 1-SPEED SUPPLY FAN)

DCV	OA Good to Economize ?	Y1-I	Y2-I	Y1-0	Y2-0	Occupied	Unoccupied
		Off	Off	0-v/Off	0-v/Off	MIN POS	Closed
None	No	On	Off	24-v/On	0-v/Off	MIN POS	Closed
		On	On	24-v/On	24-v/On	MIN POS	Closed
None Yes		Off	Off	0-v/Off	0-v/Off	MIN POS	Closed
	Yes	On	Off	0-v/Off	0-v/Off	MIN POS to Full-Open	Closed to Full-Open
		On	On	24-v/On	0-v/Off	Full-Open	Full-Open

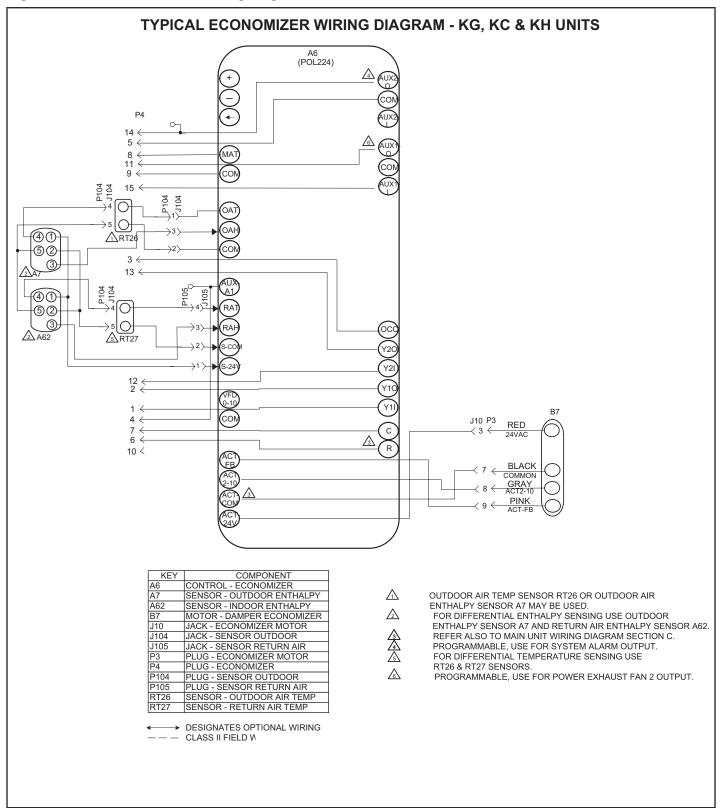
TABLE 14

ECONOMIZER OPERATION - WITH DCV (CO2 SENSOR, 1-SPEED SUPPLY FAN)

DVC	OA Good to Economize ?	Y1-I	Y2-I	Y1-0	Y2-0	Occupied	Unoccupied
		Off	Off	0-v/Off	0-v/Off	VENTMIN	Closed
	No	On	Off	24-v/On	0-v/Off	VENTMIN	Closed
Below Set		On	On	24v-/On	24-v/On	VENTMIN	Closed
Delow Set		Off	Off	0-v/Off	0-v/Off	VENTMIN	Closed
	Yes	On	Off	0-v/Off	0-v/Off	VENTMIN to Full Open	Closed to Full Open
		On	On	24-v/On	0-v/Off	Full Open	Full Open
	No	Off	Off	0-v/Off	0-v/Off	VENTMIN to VENTMAX	Closed
		On	Off	24-v/On	0-v/Off	VENTMIN to VENTMAX	Closed
Above Set		On	On	24-v/On	24-v/On	VENTMIN to VENTMAX	Closed
Above Set		Off	Off	0-v/Off	0-v/Off	VENTMIN to VENTMAX	Closed
	Yes	On	Off	0-v/Off	0-v/Off	VENTMIN to Full Open	Closed to Full Open
		On	On	24-v/On	0-v/Off	Full-Open	Full-Open

	ECONOMIZER OPERATION - NO DOV (COZ SENSOR, 2-SPEED SUPPLY FAN)								
DCV	OA Good to Economize ?	Y1-I	Y2-I	Fan Speed	Y1-0	Y2-0	Occupied	Unoccupied	
	No Off On		Off	Off	Low	0-v/Off	0-v/Off	MIN POS L	Closed
None		On	Off	Low	24-v/On	0-v/Off	MIN POS L	Closed	
		On	On	High	24-v/On	24-v/On	MIN POS H	Closed	
	None Yes	Off	Off	Low	0-v/Off	0-v/Off	MIN POS L	Closed	
None		On	Off	High	0-v/Off	0-v/Off	MIN POS L to Full-Open	Closed to Full-Open	
		On	On	High	Delay (b) -v/On	0-v/Off	Full-Open	Full-Open	

 TABLE 15


 ECONOMIZER OPERATION - NO DCV (CO2 SENSOR, 2-SPEED SUPPLY FAN)

(b) With 2FAN DLY (Basic Settings Menu), when in the economizing mode, there is a delay for the high speed fan to try to satisfy the call for second-stage cooling by turning on the fan to high and opening the OA dampers to 100% before the first-stage mechanical cooling is enabled.

ECONOMIZER OPERATION - WITH DCV (CO2 SENSOR, 2-SPEED SUPPLY FAN)								
DVC	OA Good to Economize ?	Y1-I	Y2-I	Fan Speed	Y1-0	Y2-0	Occupied	Unoccupied
		Off	Off	Low	0-v/Off	0-v/Off	VENTMIN L	Closed
	No	On	Off	Low	24-v/On	0-v/Off	VENTMIN L	Closed
		On	On	High	24v-/On	24-v/On	VENTMIN H	Closed
Below Set		Off	Off	Low	0-v/Off	0-v/Off	VENTMIN L	Closed
	Yes	On	Off	High	0-v/Off	0-v/Off	VENTMIN L to Full Open	Closed to Full Open
		On	On	High	Delay (b) 24-v/On	0-v/Off	Full Open	Full Open
		Off	Off	Low	0-v/Off	0-v/Off	VENTMIN L to VENTMAX	Closed
	No	On	Off	Low	24-v/On	0-v/Off	VENTMIN L to VENTMAX	Closed
		On	On	High	24-v/On	24-v/On	VENTMIN H to VENTMAX	Closed
Above Set		Off	Off	Low	0-v/Off	0-v/Off	VENTMIN L to VENTMAX	Closed
	Yes	On	Off	High	0-v/Off	0-v/Off	VENTMIN L to Full Open	Closed to Full Open
		On	On	High	Delay (b) 24-v/On	0-v/Off	Full-Open	Full-Open

TABLE 16 ECONOMIZER OPERATION - WITH DCV (CO2 SENSOR, 2-SPEED SUPPLY FAN)

(b) With 2FAN DLY (Basic Settings Menu), when in the economizing mode, there is a delay for the high speed fan to try to satisfy the call for second-stage cooling by turning on the fan to high and opening the OA dampers to 100% before the first-stage mechanical cooling is enabled.

E-Barometric Relief / Gravity Exhaust Dampers

C1DAMP50 (FIGURE 30) are used in downflow and LAGEDH18/24 are used in horizontal air discharge applications to provide barometric relief / gravity exhaust for the system. LAGEDH barometric relief / gravity exhaust dampers are installed in the return air plenum . The dampers must be used any time an economizer or power exhaust fans are installed.

Barometric relief / gravity exhaust dampers allow exhaust air to be discharged from the system when an economizer and/or power exhaust is operating. These dampers also prevent outdoor air infiltration during unit off cycle. See installation instructions for more detail.

F-C1PWRE10C Power Exhaust Fans

C1PWRE10C power exhaust fans are used in downflow applications only. The fans require optional downflow barometric relief / gravity exhaust dampers and K1ECON economizers. Power exhaust fans provide exhaust air pressure relief and also run when return air dampers are closed and supply air blowers are operating. FIGURE 30 shows the location of the C1PWRE. See installation instructions for more detail.

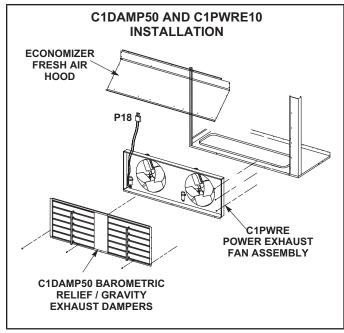
G-Control Systems

Three different types of control systems may be used. All thermostat wiring is connected to terminal block TB1 located in the control box of the unit. Each thermostat has additional control options available. See thermostat installation instructions for more detail.

1 - Electro-mechanical thermostat (13F06)

The electro-mechanical thermostat is a twostage heat / two-stage cool thermostat with dual temperature levers. A non-switching or manual system switch subbase may be used.

2 - Electronic thermostat (see price book)


Any two-stage heat / two-stage cool electronic thermostat may be used.

3 - Honeywell T7300 thermostat (81G59)

The Honeywell T7300 thermostat is a programmable, internal or optional remote temperature sensing thermostat. The T7300 provides occupied and unoccupied changeover control.

H-Smoke Detectors A171 and A172

Photoelectric smoke detectors are a field installed option. The smoke detectors can be installed in the supply air section (A172), return air section (A171), or in both the supply and return air section.

FIGURE 30

I-Indoor Air Quality (CO2) Sensor A63

The indoor air quality sensor monitors CO2 levels and reports the levels to the economizer control module A6. The board adjusts the economizer dampers according to the CO2 levels. The sensor is mounted next to the indoor thermostat or in the return air duct. Refer to the indoor air quality sensor installation instructions for proper adjustment.

J-UVC Kit

UVC germicidal lamps are a field-installed option. The lamp emits ultraviolet light that greatly reduces the growth and proliferation of mold and other bio-aerosols on illuminated surfaces. The lamp is mounted in the blower compartment with the light directed towards the indoor coil. For more details refer to the installation instructions provided with the UVC lamp.

K-Drain Pan Overflow Switch S149 (optional)

The overflow switch is used to interrupt cooling operation when excessive condensate collects in the drain pan. The N.O. overflow switch is controlled by K220 and DL46 relays, located in the unit control panel. When the overflow switch closes, 24VAC power is interrupted and after a fivesecond delay unit compressors are de-energized. Once the condensate level drops below the set level, the switch will open. After a five-minute delay the compressor will be energized.

L-Supply Air Inverter Start-Up

NOTE - Units equipped a Variable Frequency Drive (VFD) are designed to operate on balanced, three-phase power. Operating units on unbalanced three-phase power will reduce the reliability of all electrical components in the unit. Unbalanced power is a result of the power delivery system supplied by the local utility company. Factory-installed inverters are sized to drive blower motors with an equivalent current rating using balanced three-phase power. If unbalanced three-phase power is supplied; the installer must replace the existing factory-installed inverter with an inverter that has a higher current rating to allow for the imbalance. Refer to the installation instructions for additional information and available replacements.

A-General

VFD units are available which provide two blower speeds. The blower will operate at lower speeds when cooling demand is low and higher speeds when cooling demand is high. This results in lower energy consumption. VFD units will operate at high speed during ventilation (blower "G" only signal) but can be adjusted to operate at low speed. Low speed is approximately 2/3 of the full speed RPM.

B-Set Maximum Blower CFM

- 1 Initiate a blower (G) only signal from the room thermostat or control system.
- 2 Adjust the blower pulley to deliver the full (high speed) CFM in the typical manner. See Determining Unit CFM in the Blower Operation and Adjustment section.

C-Set Blower Speed During Ventilation

To save energy during ventilation, the blower speed can be set to low. This is accomplished by changing the ventilation speed switch on the VFD control board to "LO". See figure 31.

NOTE - On units equipped with an economizer, set damper minimum position as shown in the next section. After adjusting the low speed minimum position, the ventilation speed switch will be in the "LO" position.

D-Set Damper Minimum Position (Units W/ Economizer)

To maintain required minimum ventilation air volumes when the unit is in the occupied mode, two minimum damper positions must be set. A high and a low speed potentiometer are provided on the VFD control board to adjust minimum damper position. See FIGURE 32.

Set High Speed Minimum Position

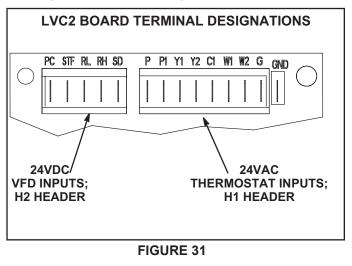
- 1 Initiate a blower (G) only AND occupied demand from the room thermostat or control system.
- 2 Set the ventilation speed switch on the VFD control board to "HI".

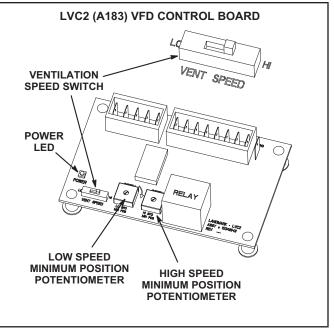
- 3 Rotate the high speed potentiometer on the VFD control board to set the high speed minimum damper position.
- 4 Measure the intake air CFM. If the CFM is lower than the design specified CFM for ventilation air, use the potentiometer to increase the damper percent open. If the CFM is higher than specified, decrease the damper percent open.

NOTE - Intake air CFM can also be determined using the outdoor air temperature, return air temperature and mixed air temperature. Refer to the economizer or outdoor air damper installation instructions.

Set Low Speed Minimum Position

- 1 Initiate a blower (G) only AND occupied demand from the room thermostat or control system.
- 2 Set the ventilation speed switch on the VFD control board to "LO".
- 3 Rotate the low speed potentiometer on the VFD control board to set the low speed minimum damper position.
- 4 Measure the intake air CFM. If the CFM is lower than the design specified CFM for ventilation air, use the potentiometer to increase the damper percent open. If the CFM is higher than specified, decrease the damper percent open.


NOTE - Intake air CFM can also be determined using the outdoor air temperature, return air temperature and mixed air temperature. Refer to the economizer or outdoor air damper installation instructions.


Troubleshoot LVC2 Board (A183)

Refer to wiring diagram sections B (unit), C (control) and D (economizer) located on inside of unit panels.

- 1 Inspect the LVC2 for damaged components. Replace the LVC2 if damaged components are found.
- 2 Check all wire connections to LVC2; secure if loose.
- 3 Check for 24VAC signal at the thermostat blower input (G to GND terminal). See FIGURE 31.
- 4 If there is no thermostat signal, troubleshoot back toward the thermostat.
- 5 Check the power LED on the board. See FIGURE 32.
- 6 If the power LED is not on, check voltage between LVC2 terminals PC (H2-1) and SD (H2-5). Voltage should read 24VDC.


- 7 If voltage does not read 24VDC, disconnect the H2 header from the LVC2 VFD inputs terminal block(make sure the LVC2 is not shorting 24VDC supply from the inverter). Measure the voltage between the end terminals on the H2 header. If 24VDC is present, replace the LVC2 board. If no voltage is read, troubleshoot the VFD.
- 8 When LVC2 24VAC thermostat blower (G) input and 24VDC power are present, check the LVC2 low and high speed outputs. The LVC2 uses inverse logic to enable the blower; 1VDC will be read at the enabled blower speed terminal. See TABLE 17.
- 9 If all inputs are correct and the unit still does not operate as intended, replace LVC2 board.

FIGURE 32

TABLE 17						
OutputTerminals	Voltage	Blower Operation				
RL-SD	1VDC	Low Spood				
RH-SD	24VDC	Low Speed				
RL-SD	24VDC	High Speed				
RH-SD	1VDC	High Speed				
RL-SD	1VDC	Illegal Sate				
RH-SD	VDC	(replace board)				
RL-SD	24VDC	Blower Off				
RH-SD	24VDC	(replace board)				

Power:

1 - Line voltage from TB13 energizes transformer T1 and T18. T1 provides 24VAC to the unit cooling, heating, blower controls, CMC1, CMC2, reversing valve L1 and TB1. T18 provides 24VAC to reversing valve L2.

Blower Operation:

- 2 TB1 receives a demand from thermostat terminal G and energizes blower contactor K3 24VAC.
- 3 N.O. K3 closes, energizing blower B3.

Optional Power Exhaust Operation:

- 4 The economizer control module receives a demand and energizes exhaust fan relay K65 with 24VAC at 50% outside air damper open (adjustable).
- 5 N.O. K65-1 and N.O. K65-2 both close, energizing exhaust fan motors B10 and B11.

1st Stage Cooling (compressor B1)

- 6 First stage cooling demand routed from thermostat provides 24VAC to Y1 and G on TB1. G energizes blower (see step 3-)
- 7 24VAC routed from T1 energizes reversing valve L1.
- 8 24VAC routed from CMC1 proving N.C. high pressure switch S4 and N.C. freezestat S49. Compressor contactor K1 is energized.
- 9 K1 closes energizing compressor B1.
- 10 N.O. contacts K10 and K254 close energizing condenser fan B4 and B5 respectively.

2nd Stage Cooling (compressor B2 is energized)

- 11 Second stage cooling demand energizes Y2.
- 12 12- 24VAC routed from T18 energizes reversing valve L2.
- 13 24VAC is routed from CMC2 proving N.C. high pressure switch S7 to energize compressor contactor K2.
- 14 N.O. K2 closes energizing compressor B2.
- 15 N.O. contacts K150 and K255 close energizing condenser fan B21 and B22 respectively.

First Stage Heat (compressors B1 and B2)

NOTE: On first heating demand after unit has been in cooling mode, unit will de-energize reversing valves L1 and L2.

- 16 Heating demand energizes W1 in the thermostat.
- 17 CMC1 and CMC2 prove N.C. high pressure switches S4 and S7 and N.C. freezestats S49 and S50; compressor contactors K1 and K2 are energized.
- 18 K1 and K2 close energizing compressor B1 and B2.
- 19 K10, K254, K150 and K255 close energizing outdoor fans B4, B5, K21 and K22 respectively.

Second Stage Heat (electric heat):

- 20 Second stage heat demand energizes W2 in the thermostat.
- 21 See sequence of operation for electric heat.

Defrost Mode

- 22 During heating operation, when outdoor coil drops to $35 \pm 4^{\circ}$ the defrost thermostat S6 or S9 closes initiating defrost (after minimum run time of 30, 60 or 90 minutes).
- 23 When defrost begins, the reversing valve L1 or L2 is energized. Supplemental electric heat (W2) is energized when stage 1 is in defrost mode.
- 24 When L1 energizes outdoor fan relays K10 and K254, outdoor fans B4 and B5 are de-energized. When L2 energizes outdoor fan relay K150 and K255, outdoor fans B21 and B22 are de-energized.
- 25 Defrost terminates when the pressure switch for the circuit S46 or S104 opens, or when 15 minutes has elapsed. The defrost cycle is not terminated when thermostat demand ends.

MSAV BLOWER OPERATION

Cooling and heating operate the same as non-MSAV units except for blower operation. During ventilation, the blower speed is determined by the low/high switch on the A183 VFD control board. During heating, the blower operates on high speed. See TABLE 18 for blower speed during cooling.

Diagram Reference No.	Diagram Reference No.	Thermostat Demand	A183 Terminals Energized	Blower Speed
1	Not Suitable (or no economizer)	Y1	Y1 and C1*	Low
2	Suitable	Y1	Y1	High
3	Not Suitable (or no economizer)	Y1 and Y2	Y1, C1* and Y2	High
4	Suitable	Y1 and Y2	Y1, C1* and Y2	High

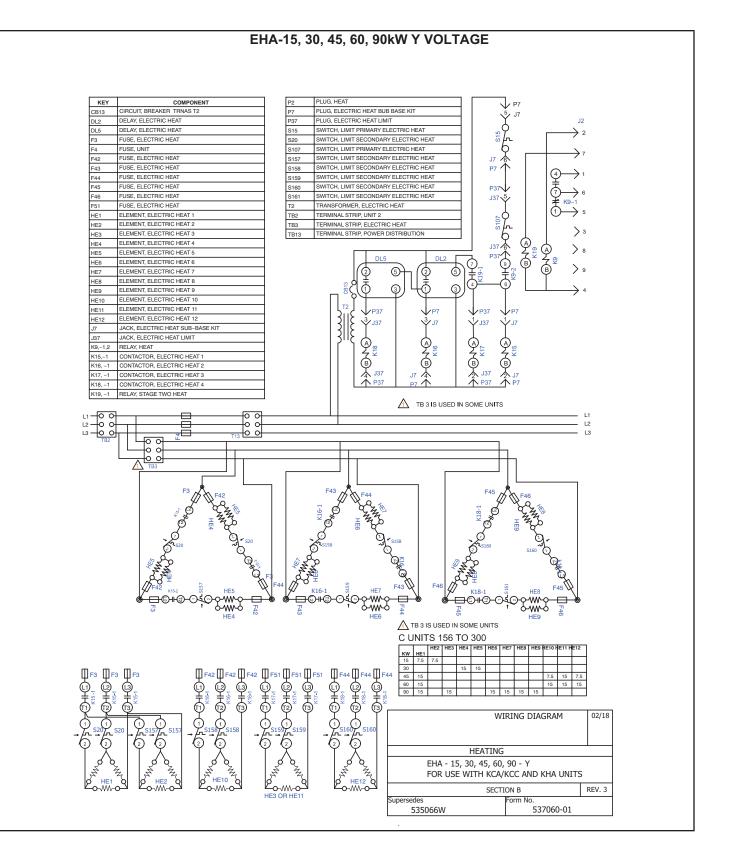
TABLE 18

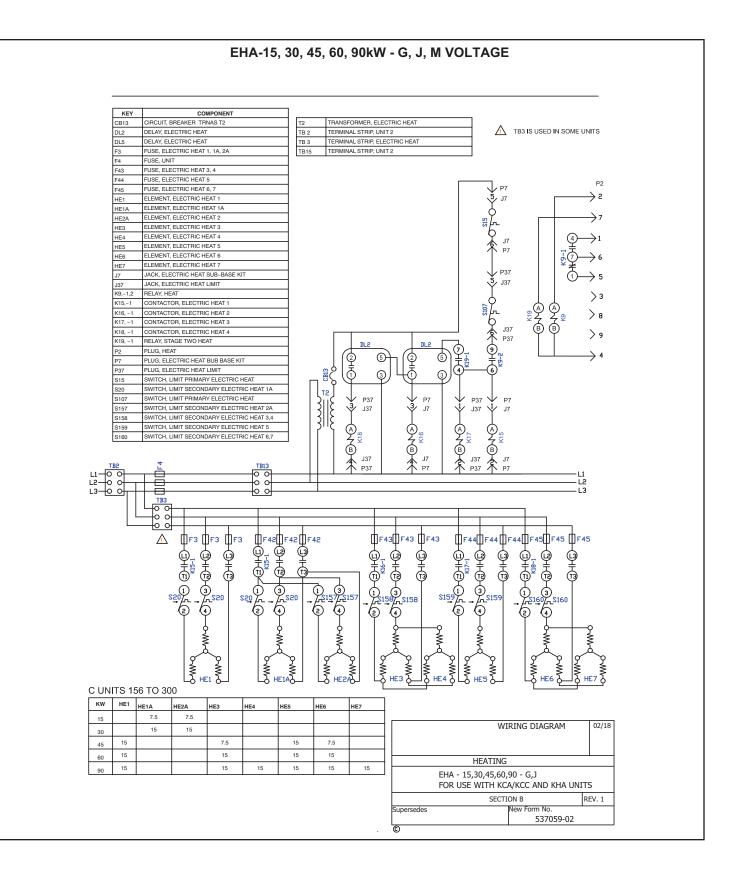
*C1 is energized via A6 enthalpy control.

Y1 thermostat demand, outdoor air NOT suitable for free cooling (or no economizer):

1 - 24v is routed to A183 VFD control board Y1 and C1 (via A6-2) terminals. A183 operates the blower in low speed.

Y1 thermostat demand, outdoor air SUITABLE for free cooling:


2 - 24v is routed to A183 VFD control board Y1 terminal. A183 operates the blower in high speed.


Y1 and Y2 thermostat demand, outdoor air NOT suitable for free cooling (or no economizer)

3 - 24v is routed to A183 VFD control board Y1, Y2 and C1 (via A6-2) terminals. A183 operates the blower in high speed.

Y1 and Y2 thermostat demand, outdoor air SUITABLE for free cooling:

4 - 24v is routed to A183 VFD control board Y1, Y2 and C1 (via A6-3) terminals. A183 operates the blower in high speed.

NOTE: This sequence of operation is for all Electric Heat *kW* ratings Y, G, J and M voltages.

HEATING ELEMENTS:

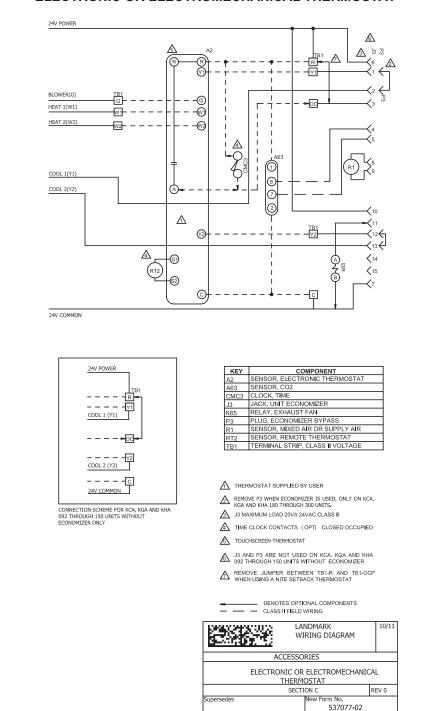
1 - Terminal Strip TB2 supplies power to TB3. TB3 supplies line voltage to electric heat elements HE1 through HE7 in G, J and M volt units. TB3 supplies line voltage to electric heat elements HE1 through HE12 in Y volt units. Each element is protected by fuse F3.

SECOND STAGE HEAT DEMAND:

Heating demand initiates at W2 in thermostat.

- 2 24VAC is routed from T2, proving N.C. primary limits S15 (first heat section) and S107 (second heat section). Voltage then energizes contactors K15 and K17. 24VAC is routed through P2 energizing relays K9 and K19. N.O. K9-2 and K19-1 close.
- 3 N.O. contact K15-1 closes allowing the first bank of elements to be energized. N.O. K17-1 closes allowing the second bank of elements to be energized.
- 4 Relay K19 is energized. N.O. contacts K19-1 close energizing timer DL2.

With the first stage heat operating, an additional heating demand initiates at W2 in the thermostat.

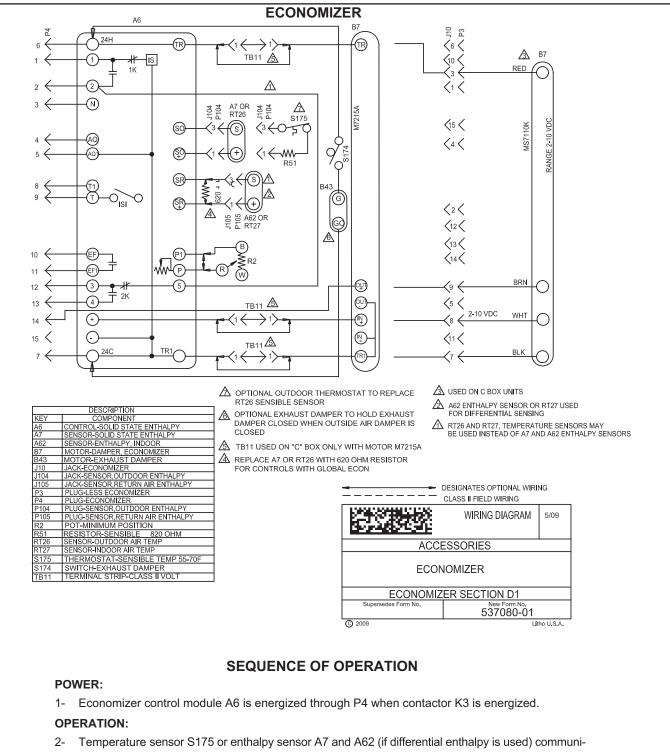

- 5 After a 30 second delay, DL2 closes energizing contactor K16 and timer DL5.
- 6 N.O. contacts K16-1 close allowing the third bank of elements to be energized.
- 7 After a 30 second delay, DL5 closes energizing contactorK18. K18-1 closes allowing the fourth bank of elements to be energized.

SECOND STAGE HEAT DEMAND SATISFIED:

Heating demand is satisfied. Terminal W2 in the thermostat is de-energized.

- 8 Electric heat contactors K15 and K17 are deenergized.
- 9 The second and first set of elements are deenergized.
- 10 Electric heat contactors K16 and K18 are deenergized.
- 11 The fourth and third set of elements are deenergized. Heating demand is satisfied. Terminal W2 in the thermostat is de-energized.

ELECTRONIC OR ELECTROMECHANICAL THERMOSTAT


POWER:

1- Terminal strip TB1 found on the control panel energizes thermostat components with 24VAC. **OPERATION:**

C 2011

Lennox Commercia

2- TB1 receives data from the electronic thermostat A2 (Y1, Y2, W1, W2, G, OCP) TB1 energizes the appropriate components for heat or cool demand.

- cates to the economizer control module A6 when to power the damper motor B7.
- 3- Economizer control module A6 supplies B7 with 0 10 VDC to control the positioning of economizer.
- 4- The damper actuator provides 2 to 10 VDC position feedback.