

CONTROLS KITS AND ACCESSORIES

508366-01 10/23

CARBON DIOXIDE (CO₂) SENSOR KIT

INSTALLATION INSTRUCTIONS FOR CARBON DIOXIDE (CO₂) SENSOR (24C58)

Improper installation, adjustment, alteration, service or maintenance can cause personal injury, loss of life, or damage to property.

Installation and service must be performed by a licensed professional installer (or equivalent) or a service agency.

Shipping and Packing List

Check contents for shipping damage. The receiving party should contact the last carrier immediately if shipping damage is found.

Package 1 of 1 contains:

Description	Quantity
CO ₂ Sensor With Sub-base	1
Wiring Diagram	1

IMPORTANT

These instructions are intended as a general guide and do not supersede local codes in any way. Authorities having jurisdiction should be consulted before installation.

Dimensions

Figure 1. Carbon Dioxide Sensor Dimensions

Installation

SUB-BASE & SENSOR

- 1. Insert a thin, flat blade screwdriver into each of the two slots at the bottom of the module to release the two locking tabs.
- 2. Tilt the cover out and away from the subbase to release the two locking tabs.
- Insert the wire in the required terminal location and tighten the screw to complete the termination.
- Align the top edge and swing down the module until engaged with the lower retaining tabs to reinstall the sensing module on the subbase.

Figure 2. Attaching/Removing the Module from its Sub-Base

MOUNTING THE SUB-BASE

Use the mounting subbase as a template to mark mounting holes or mount to a junction box on a wall. The module can be mounted using the standard utility conduit box with No.6 (3.5 mm) screws or on a 60 mm wall outlet box.

Figure 3. Installing Sub-Base on the Wall

The location and connections to the Lennox rooftop units with the unit controller are shown in Figures 4 and 5.

Figure 4. Field Wiring - 150' (46m) or Shorter Runs

Figure 5. Field Wiring - 150' (46m) or Longer Runs

The connections to the Lennox rooftop units without the unit controller are shown in Figure 6.

Sensor Terminal Block	Standard Economizer Honeywell W7212A
Signal Ground: GND (6)	 A6-AQ1
Vout. 0 - 10V: Analog Out (5)	A6-AQ
Vin AC Input: V+ (4)	TB1-R (24VAC)
Com. AC Ground / DC (3)	TB1-C (24VAC GND)

A6 – Enthalpy Control Located on Economizer Assemb
--

Sensor Terminal Block	High Performance Economizer Honeywell Jade W7220
Signal Ground: GND (6) Vout. 0 - 10V: Analog Out (5)	J3 A6-IAQ-2-10 J3 A6-IAQ-COM
Vin. AC Input: V+ (4) Com. AC Ground / DC (3)	

J3 - Located next to Economizer Assembly

Sensor Terminal Block	High Performance Economizer Siemens Climatix
Vout. 0 - 10V: Analog Out (5)	A6-AUX-AI
Com. AC Ground / DC (3)	TB1-C (24VAC GND)
Vin. AC Input: V+ (4)	- TB1-R (24VAC)

Figure 6. Field Wiring for KC/KG/KH, ZC/ZG/ZH and ELA units without Unit Controller

For applications that require the Lennox CO_2 sensor interface to a non–Lennox controller, refer to controller manufacturer's instructions.

• 24 AWG Maximum for Copper Wire Terminals

CO, THRESHOLD SETTINGS / LED ALERT

The sensor has adjustable range, determined by three DIP Switch positions. Refer to Table 1 for more details.

Figure 7. Location of DIP Switches*

*Figure 7 shows 1100 ppm settings.

SW1	SW2	SW3	Indicator (ppm)	Output Type
ON	ON	ON	1200	
ON	OFF	ON	1100	2 -10V
OFF	ON	ON	1000	4 - 20mA
OFF	OFF	ON	800	
ON	ON	OFF	1200	
ON	OFF	OFF	1100	0 - 10V
OFF	ON	OFF	1000	4 - 20mA
OFF	OFF	OFF	800	

Table 1. DIP Switch Settings

ABC LOGIC[™] SELF CALIBRATION SYSTEM

This feature allows the sensor to continually recalibrate itself when the indoor CO_2 concentrations drop to outside levels while the building is unoccupied. A building must be unoccupied for four hours or more for this self-calibration system to operate properly. Under these conditions, ABC Logic should maintain sensor calibration over the lifetime of the sensor.

Specifications

Specification	Description
Sensing Method	Automatic Background Calibration (ABC), Non-Dispersion Infrared (NDIR)
Measurement Range	0–2000 ppm
Accuracy	± (30 ppm +3% of reading) within the range 0-2000 ppm
	± (75 ppm at a 600 - 1000 ppm)
Stability	15 Year, Accuracy drift over lifetime: ± 50 ppm
Warm-up Time	< 20 seconds
Operating Conditions	+32°F to +122°F (0°C to +50°C), 0-95% RH (non- condensing)
Storage Conditions	-40°F to 158ºF (-40°C to 70ºC)
Output (Analog)	0/2-10 VDC (resistive load greater than 5000 ohms), 4-20 mA (resistive load less than 500 ohms)
Power Supply Requirements	24 VAC/DC ±20%, 50/60 Hz (Class 2)
Temperature Dependence	2.5ppm/ °C (0-50°C)
Pressure Dependence	N/A
Certifications	CE and RoHS compliant
Signal Update	Every 2 seconds
Flammability Classification	UL94-V0
Thermistor Type	10k NTC in serial with 1k resistor
Power Consumption	Max 3W